CHips L MINI SHELL

CHips L pro

Current Path : /proc/2/cwd/proc/3/root/proc/3/root/usr/share/doc/python-docs-2.6.6/html/library/
Upload File :
Current File : //proc/2/cwd/proc/3/root/proc/3/root/usr/share/doc/python-docs-2.6.6/html/library/bisect.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>8.5. bisect — Array bisection algorithm &mdash; Python v2.6.6 documentation</title>
    <link rel="stylesheet" href="../_static/default.css" type="text/css" />
    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../',
        VERSION:     '2.6.6',
        COLLAPSE_MODINDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../_static/jquery.js"></script>
    <script type="text/javascript" src="../_static/doctools.js"></script>
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within Python v2.6.6 documentation"
          href="../_static/opensearch.xml"/>
    <link rel="author" title="About these documents" href="../about.html" />
    <link rel="copyright" title="Copyright" href="../copyright.html" />
    <link rel="top" title="Python v2.6.6 documentation" href="../index.html" />
    <link rel="up" title="8. Data Types" href="datatypes.html" />
    <link rel="next" title="8.6. array — Efficient arrays of numeric values" href="array.html" />
    <link rel="prev" title="8.4. heapq — Heap queue algorithm" href="heapq.html" />
    <link rel="shortcut icon" type="image/png" href="../_static/py.png" />
 

  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../modindex.html" title="Global Module Index"
             accesskey="M">modules</a> |</li>
        <li class="right" >
          <a href="array.html" title="8.6. array — Efficient arrays of numeric values"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="heapq.html" title="8.4. heapq — Heap queue algorithm"
             accesskey="P">previous</a> |</li>
        <li><img src="../_static/py.png" alt=""
                 style="vertical-align: middle; margin-top: -1px"/></li>
        <li><a href="../index.html">Python v2.6.6 documentation</a> &raquo;</li>

          <li><a href="index.html" >The Python Standard Library</a> &raquo;</li>
          <li><a href="datatypes.html" accesskey="U">8. Data Types</a> &raquo;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="module-bisect">
<h1>8.5. <tt class="xref docutils literal"><span class="pre">bisect</span></tt> &#8212; Array bisection algorithm<a class="headerlink" href="#module-bisect" title="Permalink to this headline">¶</a></h1>
<p>This module provides support for maintaining a list in sorted order without
having to sort the list after each insertion.  For long lists of items with
expensive comparison operations, this can be an improvement over the more common
approach.  The module is called <tt class="xref docutils literal"><span class="pre">bisect</span></tt> because it uses a basic bisection
algorithm to do its work.  The source code may be most useful as a working
example of the algorithm (the boundary conditions are already right!).</p>
<p>The following functions are provided:</p>
<dl class="function">
<dt id="bisect.bisect_left">
<tt class="descclassname">bisect.</tt><tt class="descname">bisect_left</tt><big>(</big><em>list</em>, <em>item</em><span class="optional">[</span>, <em>lo</em><span class="optional">[</span>, <em>hi</em><span class="optional">]</span><span class="optional">]</span><big>)</big><a class="headerlink" href="#bisect.bisect_left" title="Permalink to this definition">¶</a></dt>
<dd><p>Locate the proper insertion point for <em>item</em> in <em>list</em> to maintain sorted order.
The parameters <em>lo</em> and <em>hi</em> may be used to specify a subset of the list which
should be considered; by default the entire list is used.  If <em>item</em> is already
present in <em>list</em>, the insertion point will be before (to the left of) any
existing entries.  The return value is suitable for use as the first parameter
to <tt class="docutils literal"><span class="pre">list.insert()</span></tt>.  This assumes that <em>list</em> is already sorted.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.1.</span></p>
</dd></dl>

<dl class="function">
<dt id="bisect.bisect_right">
<tt class="descclassname">bisect.</tt><tt class="descname">bisect_right</tt><big>(</big><em>list</em>, <em>item</em><span class="optional">[</span>, <em>lo</em><span class="optional">[</span>, <em>hi</em><span class="optional">]</span><span class="optional">]</span><big>)</big><a class="headerlink" href="#bisect.bisect_right" title="Permalink to this definition">¶</a></dt>
<dd><p>Similar to <a title="bisect.bisect_left" class="reference internal" href="#bisect.bisect_left"><tt class="xref docutils literal"><span class="pre">bisect_left()</span></tt></a>, but returns an insertion point which comes after
(to the right of) any existing entries of <em>item</em> in <em>list</em>.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.1.</span></p>
</dd></dl>

<dl class="function">
<dt id="bisect.bisect">
<tt class="descclassname">bisect.</tt><tt class="descname">bisect</tt><big>(</big><em>...</em><big>)</big><a class="headerlink" href="#bisect.bisect" title="Permalink to this definition">¶</a></dt>
<dd>Alias for <a title="bisect.bisect_right" class="reference internal" href="#bisect.bisect_right"><tt class="xref docutils literal"><span class="pre">bisect_right()</span></tt></a>.</dd></dl>

<dl class="function">
<dt id="bisect.insort_left">
<tt class="descclassname">bisect.</tt><tt class="descname">insort_left</tt><big>(</big><em>list</em>, <em>item</em><span class="optional">[</span>, <em>lo</em><span class="optional">[</span>, <em>hi</em><span class="optional">]</span><span class="optional">]</span><big>)</big><a class="headerlink" href="#bisect.insort_left" title="Permalink to this definition">¶</a></dt>
<dd><p>Insert <em>item</em> in <em>list</em> in sorted order.  This is equivalent to
<tt class="docutils literal"><span class="pre">list.insert(bisect.bisect_left(list,</span> <span class="pre">item,</span> <span class="pre">lo,</span> <span class="pre">hi),</span> <span class="pre">item)</span></tt>.  This assumes
that <em>list</em> is already sorted.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.1.</span></p>
</dd></dl>

<dl class="function">
<dt id="bisect.insort_right">
<tt class="descclassname">bisect.</tt><tt class="descname">insort_right</tt><big>(</big><em>list</em>, <em>item</em><span class="optional">[</span>, <em>lo</em><span class="optional">[</span>, <em>hi</em><span class="optional">]</span><span class="optional">]</span><big>)</big><a class="headerlink" href="#bisect.insort_right" title="Permalink to this definition">¶</a></dt>
<dd><p>Similar to <a title="bisect.insort_left" class="reference internal" href="#bisect.insort_left"><tt class="xref docutils literal"><span class="pre">insort_left()</span></tt></a>, but inserting <em>item</em> in <em>list</em> after any
existing entries of <em>item</em>.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.1.</span></p>
</dd></dl>

<dl class="function">
<dt id="bisect.insort">
<tt class="descclassname">bisect.</tt><tt class="descname">insort</tt><big>(</big><em>...</em><big>)</big><a class="headerlink" href="#bisect.insort" title="Permalink to this definition">¶</a></dt>
<dd>Alias for <a title="bisect.insort_right" class="reference internal" href="#bisect.insort_right"><tt class="xref docutils literal"><span class="pre">insort_right()</span></tt></a>.</dd></dl>

<div class="section" id="examples">
<h2>8.5.1. Examples<a class="headerlink" href="#examples" title="Permalink to this headline">¶</a></h2>
<p id="bisect-example">The <a title="bisect.bisect" class="reference internal" href="#bisect.bisect"><tt class="xref docutils literal"><span class="pre">bisect()</span></tt></a> function is generally useful for categorizing numeric data.
This example uses <a title="bisect.bisect" class="reference internal" href="#bisect.bisect"><tt class="xref docutils literal"><span class="pre">bisect()</span></tt></a> to look up a letter grade for an exam total
(say) based on a set of ordered numeric breakpoints: 85 and up is an &#8216;A&#8217;, 75..84
is a &#8216;B&#8217;, etc.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">grades</span> <span class="o">=</span> <span class="s">&quot;FEDCBA&quot;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">breakpoints</span> <span class="o">=</span> <span class="p">[</span><span class="mi">30</span><span class="p">,</span> <span class="mi">44</span><span class="p">,</span> <span class="mi">66</span><span class="p">,</span> <span class="mi">75</span><span class="p">,</span> <span class="mi">85</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">bisect</span> <span class="kn">import</span> <span class="n">bisect</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">def</span> <span class="nf">grade</span><span class="p">(</span><span class="n">total</span><span class="p">):</span>
<span class="gp">... </span>          <span class="k">return</span> <span class="n">grades</span><span class="p">[</span><span class="n">bisect</span><span class="p">(</span><span class="n">breakpoints</span><span class="p">,</span> <span class="n">total</span><span class="p">)]</span>
<span class="gp">...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">grade</span><span class="p">(</span><span class="mi">66</span><span class="p">)</span>
<span class="go">&#39;C&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">map</span><span class="p">(</span><span class="n">grade</span><span class="p">,</span> <span class="p">[</span><span class="mi">33</span><span class="p">,</span> <span class="mi">99</span><span class="p">,</span> <span class="mi">77</span><span class="p">,</span> <span class="mi">44</span><span class="p">,</span> <span class="mi">12</span><span class="p">,</span> <span class="mi">88</span><span class="p">])</span>
<span class="go">[&#39;E&#39;, &#39;A&#39;, &#39;B&#39;, &#39;D&#39;, &#39;F&#39;, &#39;A&#39;]</span>
</pre></div>
</div>
<p>Unlike the <a title="sorted" class="reference external" href="functions.html#sorted"><tt class="xref docutils literal"><span class="pre">sorted()</span></tt></a> function, it does not make sense for the <a title="bisect.bisect" class="reference internal" href="#bisect.bisect"><tt class="xref docutils literal"><span class="pre">bisect()</span></tt></a>
functions to have <em>key</em> or <em>reversed</em> arguments because that would lead to an
inefficent design (successive calls to bisect functions would not &#8220;remember&#8221;
all of the previous key lookups).</p>
<p>Instead, it is better to search a list of precomputed keys to find the index
of the record in question:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="p">[(</span><span class="s">&#39;red&#39;</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="p">(</span><span class="s">&#39;blue&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="s">&#39;yellow&#39;</span><span class="p">,</span> <span class="mi">8</span><span class="p">),</span> <span class="p">(</span><span class="s">&#39;black&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="o">.</span><span class="n">sort</span><span class="p">(</span><span class="n">key</span><span class="o">=</span><span class="k">lambda</span> <span class="n">r</span><span class="p">:</span> <span class="n">r</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">keys</span> <span class="o">=</span> <span class="p">[</span><span class="n">r</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">r</span> <span class="ow">in</span> <span class="n">data</span><span class="p">]</span>         <span class="c"># precomputed list of keys</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="p">[</span><span class="n">bisect_left</span><span class="p">(</span><span class="n">keys</span><span class="p">,</span> <span class="mi">0</span><span class="p">)]</span>
<span class="go">(&#39;black&#39;, 0)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="p">[</span><span class="n">bisect_left</span><span class="p">(</span><span class="n">keys</span><span class="p">,</span> <span class="mi">1</span><span class="p">)]</span>
<span class="go">(&#39;blue&#39;, 1)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="p">[</span><span class="n">bisect_left</span><span class="p">(</span><span class="n">keys</span><span class="p">,</span> <span class="mi">5</span><span class="p">)]</span>
<span class="go">(&#39;red&#39;, 5)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="p">[</span><span class="n">bisect_left</span><span class="p">(</span><span class="n">keys</span><span class="p">,</span> <span class="mi">8</span><span class="p">)]</span>
<span class="go">(&#39;yellow&#39;, 8)</span>
</pre></div>
</div>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
            <h3><a href="../contents.html">Table Of Contents</a></h3>
            <ul>
<li><a class="reference external" href="#">8.5. <tt class="docutils literal"><span class="pre">bisect</span></tt> &#8212; Array bisection algorithm</a><ul>
<li><a class="reference external" href="#examples">8.5.1. Examples</a></li>
</ul>
</li>
</ul>

            <h4>Previous topic</h4>
            <p class="topless"><a href="heapq.html"
                                  title="previous chapter">8.4. <tt class="docutils literal"><span class="pre">heapq</span></tt> &#8212; Heap queue algorithm</a></p>
            <h4>Next topic</h4>
            <p class="topless"><a href="array.html"
                                  title="next chapter">8.6. <tt class="docutils literal docutils literal"><span class="pre">array</span></tt> &#8212; Efficient arrays of numeric values</a></p>
<h3>This Page</h3>
<ul class="this-page-menu">
  <li><a href="../bugs.html">Report a Bug</a></li>
  <li><a href="../_sources/library/bisect.txt"
         rel="nofollow">Show Source</a></li>
</ul>

          <div id="searchbox" style="display: none">
            <h3>Quick search</h3>
              <form class="search" action="../search.html" method="get">
                <input type="text" name="q" size="18" />
                <input type="submit" value="Go" />
                <input type="hidden" name="check_keywords" value="yes" />
                <input type="hidden" name="area" value="default" />
              </form>
              <p class="searchtip" style="font-size: 90%">
              Enter search terms or a module, class or function name.
              </p>
          </div>
          <script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../modindex.html" title="Global Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="array.html" title="8.6. array — Efficient arrays of numeric values"
             >next</a> |</li>
        <li class="right" >
          <a href="heapq.html" title="8.4. heapq — Heap queue algorithm"
             >previous</a> |</li>
        <li><img src="../_static/py.png" alt=""
                 style="vertical-align: middle; margin-top: -1px"/></li>
        <li><a href="../index.html">Python v2.6.6 documentation</a> &raquo;</li>

          <li><a href="index.html" >The Python Standard Library</a> &raquo;</li>
          <li><a href="datatypes.html" >8. Data Types</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
    &copy; <a href="../copyright.html">Copyright</a> 1990-2011, Python Software Foundation.
    <br />
    The Python Software Foundation is a non-profit corporation.  
    <a href="http://www.python.org/psf/donations/">Please donate.</a>
    <br />
    Last updated on Jul 20, 2011.
    <a href="../bugs.html">Found a bug</a>?
    <br />
    Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 0.6.6.
    </div>

  </body>
</html>

Copyright 2K16 - 2K18 Indonesian Hacker Rulez