:mod:`hashlib` --- Secure hashes and message digests
====================================================
.. module:: hashlib
:synopsis: Secure hash and message digest algorithms.
.. moduleauthor:: Gregory P. Smith <greg@krypto.org>
.. sectionauthor:: Gregory P. Smith <greg@krypto.org>
.. versionadded:: 2.5
.. index::
single: message digest, MD5
single: secure hash algorithm, SHA1, SHA224, SHA256, SHA384, SHA512
This module implements a common interface to many different secure hash and
message digest algorithms. Included are the FIPS secure hash algorithms SHA1,
SHA224, SHA256, SHA384, and SHA512 (defined in FIPS 180-2) as well as RSA's MD5
algorithm (defined in Internet :rfc:`1321`). The terms secure hash and message
digest are interchangeable. Older algorithms were called message digests. The
modern term is secure hash.
.. note::
If you want the adler32 or crc32 hash functions they are available in
the :mod:`zlib` module.
.. warning::
Some algorithms have known hash collision weaknesses, see the FAQ at the end.
There is one constructor method named for each type of :dfn:`hash`. All return
a hash object with the same simple interface. For example: use :func:`sha1` to
create a SHA1 hash object. You can now feed this object with arbitrary strings
using the :meth:`update` method. At any point you can ask it for the
:dfn:`digest` of the concatenation of the strings fed to it so far using the
:meth:`digest` or :meth:`hexdigest` methods.
.. index:: single: OpenSSL; (use in module hashlib)
Constructors for hash algorithms that are always present in this module are
:func:`md5`, :func:`sha1`, :func:`sha224`, :func:`sha256`, :func:`sha384`, and
:func:`sha512`. Additional algorithms may also be available depending upon the
OpenSSL library that Python uses on your platform.
For example, to obtain the digest of the string ``'Nobody inspects the spammish
repetition'``:
>>> import hashlib
>>> m = hashlib.md5()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.digest_size
16
>>> m.block_size
64
More condensed:
>>> hashlib.sha224("Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'
A generic :func:`new` constructor that takes the string name of the desired
algorithm as its first parameter also exists to allow access to the above listed
hashes as well as any other algorithms that your OpenSSL library may offer. The
named constructors are much faster than :func:`new` and should be preferred.
Using :func:`new` with an algorithm provided by OpenSSL:
>>> h = hashlib.new('ripemd160')
>>> h.update("Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'
The following values are provided as constant attributes of the hash objects
returned by the constructors:
.. data:: hash.digest_size
The size of the resulting hash in bytes.
.. data:: hash.block_size
The internal block size of the hash algorithm in bytes.
A hash object has the following methods:
.. method:: hash.update(arg)
Update the hash object with the string *arg*. Repeated calls are equivalent to
a single call with the concatenation of all the arguments: ``m.update(a);
m.update(b)`` is equivalent to ``m.update(a+b)``.
.. method:: hash.digest()
Return the digest of the strings passed to the :meth:`update` method so far.
This is a string of :attr:`digest_size` bytes which may contain non-ASCII
characters, including null bytes.
.. method:: hash.hexdigest()
Like :meth:`digest` except the digest is returned as a string of double length,
containing only hexadecimal digits. This may be used to exchange the value
safely in email or other non-binary environments.
.. method:: hash.copy()
Return a copy ("clone") of the hash object. This can be used to efficiently
compute the digests of strings that share a common initial substring.
.. seealso::
Module :mod:`hmac`
A module to generate message authentication codes using hashes.
Module :mod:`base64`
Another way to encode binary hashes for non-binary environments.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
The FIPS 180-2 publication on Secure Hash Algorithms.
http://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
Wikipedia article with information on which algorithms have known issues and
what that means regarding their use.
Copyright 2K16 - 2K18 Indonesian Hacker Rulez