If you read this file _as_is_, just ignore the funny characters you
see. It is written in the POD format (see pod/perlpod.pod) which is
specially designed to be readable as is.
=head1 NAME
perlwin32 - Perl under Windows
=head1 SYNOPSIS
These are instructions for building Perl under Windows 9x/NT/2000/XP
on the Intel x86 and Itanium architectures.
=head1 DESCRIPTION
Before you start, you should glance through the README file
found in the top-level directory to which the Perl distribution
was extracted. Make sure you read and understand the terms under
which this software is being distributed.
Also make sure you read L<BUGS AND CAVEATS> below for the
known limitations of this port.
The INSTALL file in the perl top-level has much information that is
only relevant to people building Perl on Unix-like systems. In
particular, you can safely ignore any information that talks about
"Configure".
You may also want to look at two other options for building
a perl that will work on Windows NT: the README.cygwin and
README.os2 files, each of which give a different set of rules to
build a Perl that will work on Win32 platforms. Those two methods
will probably enable you to build a more Unix-compatible perl, but
you will also need to download and use various other build-time and
run-time support software described in those files.
This set of instructions is meant to describe a so-called "native"
port of Perl to Win32 platforms. This includes both 32-bit and
64-bit Windows operating systems. The resulting Perl requires no
additional software to run (other than what came with your operating
system). Currently, this port is capable of using one of the
following compilers on the Intel x86 architecture:
Borland C++ version 5.02 or later
Microsoft Visual C++ version 2.0 or later
MinGW with gcc gcc version 2.95.2 or later
The last of these is a high quality freeware compiler. Use version
3.2.x or later for the best results with this compiler.
The Borland C++ and Microsoft Visual C++ compilers are also now being given
away free. The Borland compiler is available as "Borland C++ Compiler Free
Command Line Tools" and is the same compiler that ships with the full
"Borland C++ Builder" product. The Microsoft compiler is available as
"Visual C++ Toolkit 2003" or "Visual C++ 2005/2008 Express Edition" (and also
as part of the ".NET Framework SDK") and is the same compiler that ships with
"Visual C++ .NET 2003 Professional" or "Visual C++ 2005/2008 Professional"
respectively.
This port can also be built on the Intel IA64 using:
Microsoft Platform SDK Nov 2001 (64-bit compiler and tools)
The MS Platform SDK can be downloaded from http://www.microsoft.com/.
This port fully supports MakeMaker (the set of modules that
is used to build extensions to perl). Therefore, you should be
able to build and install most extensions found in the CPAN sites.
See L<Usage Hints for Perl on Win32> below for general hints about this.
=head2 Setting Up Perl on Win32
=over 4
=item Make
You need a "make" program to build the sources. If you are using
Visual C++ or the Platform SDK tools under Windows NT/2000/XP, nmake
will work. All other builds need dmake.
dmake is a freely available make that has very nice macro features
and parallelability.
A port of dmake for Windows is available from:
http://search.cpan.org/dist/dmake/
Fetch and install dmake somewhere on your path.
There exists a minor coexistence problem with dmake and Borland C++
compilers. Namely, if a distribution has C files named with mixed
case letters, they will be compiled into appropriate .obj-files named
with all lowercase letters, and every time dmake is invoked
to bring files up to date, it will try to recompile such files again.
For example, Tk distribution has a lot of such files, resulting in
needless recompiles every time dmake is invoked. To avoid this, you
may use the script "sync_ext.pl" after a successful build. It is
available in the win32 subdirectory of the Perl source distribution.
=item Command Shell
Use the default "cmd" shell that comes with NT. Some versions of the
popular 4DOS/NT shell have incompatibilities that may cause you trouble.
If the build fails under that shell, try building again with the cmd
shell.
The nmake Makefile also has known incompatibilities with the
"command.com" shell that comes with Windows 9x. You will need to
use dmake and makefile.mk to build under Windows 9x.
The surest way to build it is on Windows NT/2000/XP, using the cmd shell.
Make sure the path to the build directory does not contain spaces. The
build usually works in this circumstance, but some tests will fail.
=item Borland C++
If you are using the Borland compiler, you will need dmake.
(The make that Borland supplies is seriously crippled and will not
work for MakeMaker builds.)
See L</"Make"> above.
=item Microsoft Visual C++
The nmake that comes with Visual C++ will suffice for building.
You will need to run the VCVARS32.BAT file, usually found somewhere
like C:\MSDEV4.2\BIN or C:\Program Files\Microsoft Visual Studio\VC98\Bin.
This will set your build environment.
You can also use dmake to build using Visual C++; provided, however,
you set OSRELEASE to "microsft" (or whatever the directory name
under which the Visual C dmake configuration lives) in your environment
and edit win32/config.vc to change "make=nmake" into "make=dmake". The
latter step is only essential if you want to use dmake as your default
make for building extensions using MakeMaker.
=item Microsoft Visual C++ 2008 Express Edition
This free version of Visual C++ 2008 Professional contains the same compiler
and linker that ship with the full version, and also contains everything
necessary to build Perl, rather than requiring a separate download of the
Platform SDK like previous versions did.
This package can be downloaded by searching for "Visual Studio 2008 Express
Edition" in the Download Center at
http://www.microsoft.com/downloads/search.aspx?displaylang=en. (Providing exact
links to these packages has proven a pointless task because the links keep on
changing so often.)
Install Visual C++ 2008, then setup your environment using
C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools\vsvars32.bat
(assuming the default installation location was chosen).
Perl should now build using the win32/Makefile. You will need to edit that
file to set
CCTYPE = MSVC90FREE
first.
=item Microsoft Visual C++ 2005 Express Edition
This free version of Visual C++ 2005 Professional contains the same compiler
and linker that ship with the full version, but doesn't contain everything
necessary to build Perl.
You will also need to download the "Platform SDK" (the "Core SDK" and "MDAC
SDK" components are required) for more header files and libraries.
These packages can both be downloaded by searching in the Download Center at
http://www.microsoft.com/downloads/search.aspx?displaylang=en. (Providing exact
links to these packages has proven a pointless task because the links keep on
changing so often.)
Try to obtain the latest version of the Platform SDK. Sometimes these packages
contain a particular Windows OS version in their name, but actually work on
other OS versions too. For example, the "Windows Server 2003 R2 Platform SDK"
also runs on Windows XP SP2 and Windows 2000.
According to the download pages these packages are only supported on Windows
2000/XP/2003, so trying to use these tools on Windows 95/98/ME and even Windows
NT probably won't work.
Install Visual C++ 2005 first, then the Platform SDK. Setup your environment
as follows (assuming default installation locations were chosen):
SET PlatformSDKDir=C:\Program Files\Microsoft Platform SDK
SET PATH=%SystemRoot%\system32;%SystemRoot%;C:\Program Files\Microsoft Visual Studio 8\Common7\IDE;C:\Program Files\Microsoft Visual Studio 8\VC\BIN;C:\Program Files\Microsoft Visual Studio 8\Common7\Tools;C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\bin;C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;C:\Program Files\Microsoft Visual Studio 8\VC\VCPackages;%PlatformSDKDir%\Bin
SET INCLUDE=C:\Program Files\Microsoft Visual Studio 8\VC\INCLUDE;%PlatformSDKDir%\include
SET LIB=C:\Program Files\Microsoft Visual Studio 8\VC\LIB;C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\lib;%PlatformSDKDir%\lib
SET LIBPATH=C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727
(The PlatformSDKDir might need to be set differently depending on which version
you are using. Earlier versions installed into "C:\Program Files\Microsoft SDK",
while the latest versions install into version-specific locations such as
"C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2".)
Perl should now build using the win32/Makefile. You will need to edit that
file to set
CCTYPE = MSVC80FREE
and to set CCHOME, CCINCDIR and CCLIBDIR as per the environment setup above.
=item Microsoft Visual C++ Toolkit 2003
This free toolkit contains the same compiler and linker that ship with
Visual C++ .NET 2003 Professional, but doesn't contain everything
necessary to build Perl.
You will also need to download the "Platform SDK" (the "Core SDK" and "MDAC
SDK" components are required) for header files, libraries and rc.exe, and
".NET Framework SDK" for more libraries and nmake.exe. Note that the latter
(which also includes the free compiler and linker) requires the ".NET
Framework Redistributable" to be installed first. This can be downloaded and
installed separately, but is included in the "Visual C++ Toolkit 2003" anyway.
These packages can all be downloaded by searching in the Download Center at
http://www.microsoft.com/downloads/search.aspx?displaylang=en. (Providing exact
links to these packages has proven a pointless task because the links keep on
changing so often.)
Try to obtain the latest version of the Platform SDK. Sometimes these packages
contain a particular Windows OS version in their name, but actually work on
other OS versions too. For example, the "Windows Server 2003 R2 Platform SDK"
also runs on Windows XP SP2 and Windows 2000.
According to the download pages these packages are only supported on Windows
2000/XP/2003, so trying to use these tools on Windows 95/98/ME and even Windows
NT probably won't work.
Install the Toolkit first, then the Platform SDK, then the .NET Framework SDK.
Setup your environment as follows (assuming default installation locations
were chosen):
SET PlatformSDKDir=C:\Program Files\Microsoft Platform SDK
SET PATH=%SystemRoot%\system32;%SystemRoot%;C:\Program Files\Microsoft Visual C++ Toolkit 2003\bin;%PlatformSDKDir%\Bin;C:\Program Files\Microsoft.NET\SDK\v1.1\Bin
SET INCLUDE=C:\Program Files\Microsoft Visual C++ Toolkit 2003\include;%PlatformSDKDir%\include;C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\include
SET LIB=C:\Program Files\Microsoft Visual C++ Toolkit 2003\lib;%PlatformSDKDir%\lib;C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\lib
(The PlatformSDKDir might need to be set differently depending on which version
you are using. Earlier versions installed into "C:\Program Files\Microsoft SDK",
while the latest versions install into version-specific locations such as
"C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2".)
Several required files will still be missing:
=over 4
=item *
cvtres.exe is required by link.exe when using a .res file. It is actually
installed by the .NET Framework SDK, but into a location such as the
following:
C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322
Copy it from there to %PlatformSDKDir%\Bin
=item *
lib.exe is normally used to build libraries, but link.exe with the /lib
option also works, so change win32/config.vc to use it instead:
Change the line reading:
ar='lib'
to:
ar='link /lib'
It may also be useful to create a batch file called lib.bat in
C:\Program Files\Microsoft Visual C++ Toolkit 2003\bin containing:
@echo off
link /lib %*
for the benefit of any naughty C extension modules that you might want to build
later which explicitly reference "lib" rather than taking their value from
$Config{ar}.
=item *
setargv.obj is required to build perlglob.exe (and perl.exe if the USE_SETARGV
option is enabled). The Platform SDK supplies this object file in source form
in %PlatformSDKDir%\src\crt. Copy setargv.c, cruntime.h and
internal.h from there to some temporary location and build setargv.obj using
cl.exe /c /I. /D_CRTBLD setargv.c
Then copy setargv.obj to %PlatformSDKDir%\lib
Alternatively, if you don't need perlglob.exe and don't need to enable the
USE_SETARGV option then you can safely just remove all mention of $(GLOBEXE)
from win32/Makefile and setargv.obj won't be required anyway.
=back
Perl should now build using the win32/Makefile. You will need to edit that
file to set
CCTYPE = MSVC70FREE
and to set CCHOME, CCINCDIR and CCLIBDIR as per the environment setup above.
=item Microsoft Platform SDK 64-bit Compiler
The nmake that comes with the Platform SDK will suffice for building
Perl. Make sure you are building within one of the "Build Environment"
shells available after you install the Platform SDK from the Start Menu.
=item MinGW release 3 with gcc
The latest release of MinGW at the time of writing is 3.1.0, which contains
gcc-3.2.3. It can be downloaded here:
http://www.mingw.org/
Perl also compiles with earlier releases of gcc (2.95.2 and up). See below
for notes about using earlier versions of MinGW/gcc.
You also need dmake. See L</"Make"> above on how to get it.
=item MinGW release 1 with gcc
The MinGW-1.1 bundle contains gcc-2.95.3.
Make sure you install the binaries that work with MSVCRT.DLL as indicated
in the README for the GCC bundle. You may need to set up a few environment
variables (usually ran from a batch file).
There are a couple of problems with the version of gcc-2.95.2-msvcrt.exe
released 7 November 1999:
=over
=item *
It left out a fix for certain command line quotes. To fix this, be sure
to download and install the file fixes/quote-fix-msvcrt.exe from the above
ftp location.
=item *
The definition of the fpos_t type in stdio.h may be wrong. If your
stdio.h has this problem, you will see an exception when running the
test t/lib/io_xs.t. To fix this, change the typedef for fpos_t from
"long" to "long long" in the file i386-mingw32msvc/include/stdio.h,
and rebuild.
=back
A potentially simpler to install (but probably soon-to-be-outdated) bundle
of the above package with the mentioned fixes already applied is available
here:
http://downloads.ActiveState.com/pub/staff/gsar/gcc-2.95.2-msvcrt.zip
ftp://ftp.ActiveState.com/pub/staff/gsar/gcc-2.95.2-msvcrt.zip
=back
=head2 Building
=over 4
=item *
Make sure you are in the "win32" subdirectory under the perl toplevel.
This directory contains a "Makefile" that will work with
versions of nmake that come with Visual C++ or the Platform SDK, and
a dmake "makefile.mk" that will work for all supported compilers. The
defaults in the dmake makefile are setup to build using MinGW/gcc.
=item *
Edit the makefile.mk (or Makefile, if you're using nmake) and change
the values of INST_DRV and INST_TOP. You can also enable various
build flags. These are explained in the makefiles.
Note that it is generally not a good idea to try to build a perl with
INST_DRV and INST_TOP set to a path that already exists from a previous
build. In particular, this may cause problems with the
lib/ExtUtils/t/Embed.t test, which attempts to build a test program and
may end up building against the installed perl's lib/CORE directory rather
than the one being tested.
You will have to make sure that CCTYPE is set correctly and that
CCHOME points to wherever you installed your compiler.
The default value for CCHOME in the makefiles for Visual C++
may not be correct for some versions. Make sure the default exists
and is valid.
You may also need to comment out the C<DELAYLOAD = ...> line in the
Makefile if you're using VC++ 6.0 without the latest service pack and
the linker reports an internal error.
If you are using VC++ 4.2 or earlier then you'll have to change the /EHsc
option in the CXX_FLAG macro to the equivalent /GX option.
If you have either the source or a library that contains des_fcrypt(),
enable the appropriate option in the makefile. A ready-to-use version
of fcrypt.c, based on the version originally written by Eric Young at
ftp://ftp.funet.fi/pub/crypt/mirrors/dsi/libdes/, is bundled with the
distribution and CRYPT_SRC is set to use it.
Alternatively, if you have built a library that contains des_fcrypt(),
you can set CRYPT_LIB to point to the library name.
Perl will also build without des_fcrypt(), but the crypt() builtin will
fail at run time.
If you want build some core extensions statically into perl's dll, specify
them in the STATIC_EXT macro.
Be sure to read the instructions near the top of the makefiles carefully.
=item *
Type "dmake" (or "nmake" if you are using that make).
This should build everything. Specifically, it will create perl.exe,
perl510.dll at the perl toplevel, and various other extension dll's
under the lib\auto directory. If the build fails for any reason, make
sure you have done the previous steps correctly.
=back
=head2 Testing Perl on Win32
Type "dmake test" (or "nmake test"). This will run most of the tests from
the testsuite (many tests will be skipped).
There should be no test failures when running under Windows NT/2000/XP.
Many tests I<will> fail under Windows 9x due to the inferior command shell.
Some test failures may occur if you use a command shell other than the
native "cmd.exe", or if you are building from a path that contains
spaces. So don't do that.
If you are running the tests from a emacs shell window, you may see
failures in op/stat.t. Run "dmake test-notty" in that case.
If you're using the Borland compiler, you may see a failure in op/taint.t
arising from the inability to find the Borland Runtime DLLs on the system
default path. You will need to copy the DLLs reported by the messages
from where Borland chose to install it, into the Windows system directory
(usually somewhere like C:\WINNT\SYSTEM32) and rerun the test.
If you're using Borland compiler versions 5.2 and below, you may run into
problems finding the correct header files when building extensions. For
example, building the "Tk" extension may fail because both perl and Tk
contain a header file called "patchlevel.h". The latest Borland compiler
(v5.5) is free of this misbehaviour, and it even supports an
option -VI- for backward (bugward) compatibility for using the old Borland
search algorithm to locate header files.
If you run the tests on a FAT partition, you may see some failures for
C<link()> related tests (I<op/write.t>, I<op/stat.t> ...). Testing on
NTFS avoids these errors.
Furthermore, you should make sure that during C<make test> you do not
have any GNU tool packages in your path: some toolkits like Unixutils
include some tools (C<type> for instance) which override the Windows
ones and makes tests fail. Remove them from your path while testing to
avoid these errors.
Please report any other failures as described under L<BUGS AND CAVEATS>.
=head2 Installation of Perl on Win32
Type "dmake install" (or "nmake install"). This will put the newly
built perl and the libraries under whatever C<INST_TOP> points to in the
Makefile. It will also install the pod documentation under
C<$INST_TOP\$INST_VER\lib\pod> and HTML versions of the same under
C<$INST_TOP\$INST_VER\lib\pod\html>.
To use the Perl you just installed you will need to add a new entry to
your PATH environment variable: C<$INST_TOP\bin>, e.g.
set PATH=c:\perl\bin;%PATH%
If you opted to uncomment C<INST_VER> and C<INST_ARCH> in the makefile
then the installation structure is a little more complicated and you will
need to add two new PATH components instead: C<$INST_TOP\$INST_VER\bin> and
C<$INST_TOP\$INST_VER\bin\$ARCHNAME>, e.g.
set PATH=c:\perl\5.6.0\bin;c:\perl\5.6.0\bin\MSWin32-x86;%PATH%
=head2 Usage Hints for Perl on Win32
=over 4
=item Environment Variables
The installation paths that you set during the build get compiled
into perl, so you don't have to do anything additional to start
using that perl (except add its location to your PATH variable).
If you put extensions in unusual places, you can set PERL5LIB
to a list of paths separated by semicolons where you want perl
to look for libraries. Look for descriptions of other environment
variables you can set in L<perlrun>.
You can also control the shell that perl uses to run system() and
backtick commands via PERL5SHELL. See L<perlrun>.
Perl does not depend on the registry, but it can look up certain default
values if you choose to put them there. Perl attempts to read entries from
C<HKEY_CURRENT_USER\Software\Perl> and C<HKEY_LOCAL_MACHINE\Software\Perl>.
Entries in the former override entries in the latter. One or more of the
following entries (of type REG_SZ or REG_EXPAND_SZ) may be set:
lib-$] version-specific standard library path to add to @INC
lib standard library path to add to @INC
sitelib-$] version-specific site library path to add to @INC
sitelib site library path to add to @INC
vendorlib-$] version-specific vendor library path to add to @INC
vendorlib vendor library path to add to @INC
PERL* fallback for all %ENV lookups that begin with "PERL"
Note the C<$]> in the above is not literal. Substitute whatever version
of perl you want to honor that entry, e.g. C<5.6.0>. Paths must be
separated with semicolons, as usual on win32.
=item File Globbing
By default, perl handles file globbing using the File::Glob extension,
which provides portable globbing.
If you want perl to use globbing that emulates the quirks of DOS
filename conventions, you might want to consider using File::DosGlob
to override the internal glob() implementation. See L<File::DosGlob> for
details.
=item Using perl from the command line
If you are accustomed to using perl from various command-line
shells found in UNIX environments, you will be less than pleased
with what Windows offers by way of a command shell.
The crucial thing to understand about the Windows environment is that
the command line you type in is processed twice before Perl sees it.
First, your command shell (usually CMD.EXE on Windows NT, and
COMMAND.COM on Windows 9x) preprocesses the command line, to handle
redirection, environment variable expansion, and location of the
executable to run. Then, the perl executable splits the remaining
command line into individual arguments, using the C runtime library
upon which Perl was built.
It is particularly important to note that neither the shell nor the C
runtime do any wildcard expansions of command-line arguments (so
wildcards need not be quoted). Also, the quoting behaviours of the
shell and the C runtime are rudimentary at best (and may, if you are
using a non-standard shell, be inconsistent). The only (useful) quote
character is the double quote ("). It can be used to protect spaces
and other special characters in arguments.
The Windows NT documentation has almost no description of how the
quoting rules are implemented, but here are some general observations
based on experiments: The C runtime breaks arguments at spaces and
passes them to programs in argc/argv. Double quotes can be used to
prevent arguments with spaces in them from being split up. You can
put a double quote in an argument by escaping it with a backslash and
enclosing the whole argument within double quotes. The backslash and
the pair of double quotes surrounding the argument will be stripped by
the C runtime.
The file redirection characters "E<lt>", "E<gt>", and "|" can be quoted by
double quotes (although there are suggestions that this may not always
be true). Single quotes are not treated as quotes by the shell or
the C runtime, they don't get stripped by the shell (just to make
this type of quoting completely useless). The caret "^" has also
been observed to behave as a quoting character, but this appears
to be a shell feature, and the caret is not stripped from the command
line, so Perl still sees it (and the C runtime phase does not treat
the caret as a quote character).
Here are some examples of usage of the "cmd" shell:
This prints two doublequotes:
perl -e "print '\"\"' "
This does the same:
perl -e "print \"\\\"\\\"\" "
This prints "bar" and writes "foo" to the file "blurch":
perl -e "print 'foo'; print STDERR 'bar'" > blurch
This prints "foo" ("bar" disappears into nowhereland):
perl -e "print 'foo'; print STDERR 'bar'" 2> nul
This prints "bar" and writes "foo" into the file "blurch":
perl -e "print 'foo'; print STDERR 'bar'" 1> blurch
This pipes "foo" to the "less" pager and prints "bar" on the console:
perl -e "print 'foo'; print STDERR 'bar'" | less
This pipes "foo\nbar\n" to the less pager:
perl -le "print 'foo'; print STDERR 'bar'" 2>&1 | less
This pipes "foo" to the pager and writes "bar" in the file "blurch":
perl -e "print 'foo'; print STDERR 'bar'" 2> blurch | less
Discovering the usefulness of the "command.com" shell on Windows 9x
is left as an exercise to the reader :)
One particularly pernicious problem with the 4NT command shell for
Windows NT is that it (nearly) always treats a % character as indicating
that environment variable expansion is needed. Under this shell, it is
therefore important to always double any % characters which you want
Perl to see (for example, for hash variables), even when they are
quoted.
=item Building Extensions
The Comprehensive Perl Archive Network (CPAN) offers a wealth
of extensions, some of which require a C compiler to build.
Look in http://www.cpan.org/ for more information on CPAN.
Note that not all of the extensions available from CPAN may work
in the Win32 environment; you should check the information at
http://testers.cpan.org/ before investing too much effort into
porting modules that don't readily build.
Most extensions (whether they require a C compiler or not) can
be built, tested and installed with the standard mantra:
perl Makefile.PL
$MAKE
$MAKE test
$MAKE install
where $MAKE is whatever 'make' program you have configured perl to
use. Use "perl -V:make" to find out what this is. Some extensions
may not provide a testsuite (so "$MAKE test" may not do anything or
fail), but most serious ones do.
It is important that you use a supported 'make' program, and
ensure Config.pm knows about it. If you don't have nmake, you can
either get dmake from the location mentioned earlier or get an
old version of nmake reportedly available from:
http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/nmake15.exe
Another option is to use the make written in Perl, available from
CPAN.
http://www.cpan.org/modules/by-module/Make/
You may also use dmake. See L</"Make"> above on how to get it.
Note that MakeMaker actually emits makefiles with different syntax
depending on what 'make' it thinks you are using. Therefore, it is
important that one of the following values appears in Config.pm:
make='nmake' # MakeMaker emits nmake syntax
make='dmake' # MakeMaker emits dmake syntax
any other value # MakeMaker emits generic make syntax
(e.g GNU make, or Perl make)
If the value doesn't match the 'make' program you want to use,
edit Config.pm to fix it.
If a module implements XSUBs, you will need one of the supported
C compilers. You must make sure you have set up the environment for
the compiler for command-line compilation.
If a module does not build for some reason, look carefully for
why it failed, and report problems to the module author. If
it looks like the extension building support is at fault, report
that with full details of how the build failed using the perlbug
utility.
=item Command-line Wildcard Expansion
The default command shells on DOS descendant operating systems (such
as they are) usually do not expand wildcard arguments supplied to
programs. They consider it the application's job to handle that.
This is commonly achieved by linking the application (in our case,
perl) with startup code that the C runtime libraries usually provide.
However, doing that results in incompatible perl versions (since the
behavior of the argv expansion code differs depending on the
compiler, and it is even buggy on some compilers). Besides, it may
be a source of frustration if you use such a perl binary with an
alternate shell that *does* expand wildcards.
Instead, the following solution works rather well. The nice things
about it are 1) you can start using it right away; 2) it is more
powerful, because it will do the right thing with a pattern like
*/*/*.c; 3) you can decide whether you do/don't want to use it; and
4) you can extend the method to add any customizations (or even
entirely different kinds of wildcard expansion).
C:\> copy con c:\perl\lib\Wild.pm
# Wild.pm - emulate shell @ARGV expansion on shells that don't
use File::DosGlob;
@ARGV = map {
my @g = File::DosGlob::glob($_) if /[*?]/;
@g ? @g : $_;
} @ARGV;
1;
^Z
C:\> set PERL5OPT=-MWild
C:\> perl -le "for (@ARGV) { print }" */*/perl*.c
p4view/perl/perl.c
p4view/perl/perlio.c
p4view/perl/perly.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c
Note there are two distinct steps there: 1) You'll have to create
Wild.pm and put it in your perl lib directory. 2) You'll need to
set the PERL5OPT environment variable. If you want argv expansion
to be the default, just set PERL5OPT in your default startup
environment.
If you are using the Visual C compiler, you can get the C runtime's
command line wildcard expansion built into perl binary. The resulting
binary will always expand unquoted command lines, which may not be
what you want if you use a shell that does that for you. The expansion
done is also somewhat less powerful than the approach suggested above.
=item Win32 Specific Extensions
A number of extensions specific to the Win32 platform are available
from CPAN. You may find that many of these extensions are meant to
be used under the Activeware port of Perl, which used to be the only
native port for the Win32 platform. Since the Activeware port does not
have adequate support for Perl's extension building tools, these
extensions typically do not support those tools either and, therefore,
cannot be built using the generic steps shown in the previous section.
To ensure smooth transitioning of existing code that uses the
ActiveState port, there is a bundle of Win32 extensions that contains
all of the ActiveState extensions and several other Win32 extensions from
CPAN in source form, along with many added bugfixes, and with MakeMaker
support. The latest version of this bundle is available at:
http://search.cpan.org/dist/libwin32/
See the README in that distribution for building and installation
instructions.
=item Notes on 64-bit Windows
Windows .NET Server supports the LLP64 data model on the Intel Itanium
architecture.
The LLP64 data model is different from the LP64 data model that is the
norm on 64-bit Unix platforms. In the former, C<int> and C<long> are
both 32-bit data types, while pointers are 64 bits wide. In addition,
there is a separate 64-bit wide integral type, C<__int64>. In contrast,
the LP64 data model that is pervasive on Unix platforms provides C<int>
as the 32-bit type, while both the C<long> type and pointers are of
64-bit precision. Note that both models provide for 64-bits of
addressability.
64-bit Windows running on Itanium is capable of running 32-bit x86
binaries transparently. This means that you could use a 32-bit build
of Perl on a 64-bit system. Given this, why would one want to build
a 64-bit build of Perl? Here are some reasons why you would bother:
=over
=item *
A 64-bit native application will run much more efficiently on
Itanium hardware.
=item *
There is no 2GB limit on process size.
=item *
Perl automatically provides large file support when built under
64-bit Windows.
=item *
Embedding Perl inside a 64-bit application.
=back
=back
=head2 Running Perl Scripts
Perl scripts on UNIX use the "#!" (a.k.a "shebang") line to
indicate to the OS that it should execute the file using perl.
Win32 has no comparable means to indicate arbitrary files are
executables.
Instead, all available methods to execute plain text files on
Win32 rely on the file "extension". There are three methods
to use this to execute perl scripts:
=over 8
=item 1
There is a facility called "file extension associations" that will
work in Windows NT 4.0. This can be manipulated via the two
commands "assoc" and "ftype" that come standard with Windows NT
4.0. Type "ftype /?" for a complete example of how to set this
up for perl scripts (Say what? You thought Windows NT wasn't
perl-ready? :).
=item 2
Since file associations don't work everywhere, and there are
reportedly bugs with file associations where it does work, the
old method of wrapping the perl script to make it look like a
regular batch file to the OS, may be used. The install process
makes available the "pl2bat.bat" script which can be used to wrap
perl scripts into batch files. For example:
pl2bat foo.pl
will create the file "FOO.BAT". Note "pl2bat" strips any
.pl suffix and adds a .bat suffix to the generated file.
If you use the 4DOS/NT or similar command shell, note that
"pl2bat" uses the "%*" variable in the generated batch file to
refer to all the command line arguments, so you may need to make
sure that construct works in batch files. As of this writing,
4DOS/NT users will need a "ParameterChar = *" statement in their
4NT.INI file or will need to execute "setdos /p*" in the 4DOS/NT
startup file to enable this to work.
=item 3
Using "pl2bat" has a few problems: the file name gets changed,
so scripts that rely on C<$0> to find what they must do may not
run properly; running "pl2bat" replicates the contents of the
original script, and so this process can be maintenance intensive
if the originals get updated often. A different approach that
avoids both problems is possible.
A script called "runperl.bat" is available that can be copied
to any filename (along with the .bat suffix). For example,
if you call it "foo.bat", it will run the file "foo" when it is
executed. Since you can run batch files on Win32 platforms simply
by typing the name (without the extension), this effectively
runs the file "foo", when you type either "foo" or "foo.bat".
With this method, "foo.bat" can even be in a different location
than the file "foo", as long as "foo" is available somewhere on
the PATH. If your scripts are on a filesystem that allows symbolic
links, you can even avoid copying "runperl.bat".
Here's a diversion: copy "runperl.bat" to "runperl", and type
"runperl". Explain the observed behavior, or lack thereof. :)
Hint: .gnidnats llits er'uoy fi ,"lrepnur" eteled :tniH
=back
=head2 Miscellaneous Things
A full set of HTML documentation is installed, so you should be
able to use it if you have a web browser installed on your
system.
C<perldoc> is also a useful tool for browsing information contained
in the documentation, especially in conjunction with a pager
like C<less> (recent versions of which have Win32 support). You may
have to set the PAGER environment variable to use a specific pager.
"perldoc -f foo" will print information about the perl operator
"foo".
One common mistake when using this port with a GUI library like C<Tk>
is assuming that Perl's normal behavior of opening a command-line
window will go away. This isn't the case. If you want to start a copy
of C<perl> without opening a command-line window, use the C<wperl>
executable built during the installation process. Usage is exactly
the same as normal C<perl> on Win32, except that options like C<-h>
don't work (since they need a command-line window to print to).
If you find bugs in perl, you can run C<perlbug> to create a
bug report (you may have to send it manually if C<perlbug> cannot
find a mailer on your system).
=head1 BUGS AND CAVEATS
Norton AntiVirus interferes with the build process, particularly if
set to "AutoProtect, All Files, when Opened". Unlike large applications
the perl build process opens and modifies a lot of files. Having the
the AntiVirus scan each and every one slows build the process significantly.
Worse, with PERLIO=stdio the build process fails with peculiar messages
as the virus checker interacts badly with miniperl.exe writing configure
files (it seems to either catch file part written and treat it as suspicious,
or virus checker may have it "locked" in a way which inhibits miniperl
updating it). The build does complete with
set PERLIO=perlio
but that may be just luck. Other AntiVirus software may have similar issues.
Some of the built-in functions do not act exactly as documented in
L<perlfunc>, and a few are not implemented at all. To avoid
surprises, particularly if you have had prior exposure to Perl
in other operating environments or if you intend to write code
that will be portable to other environments, see L<perlport>
for a reasonably definitive list of these differences.
Not all extensions available from CPAN may build or work properly
in the Win32 environment. See L</"Building Extensions">.
Most C<socket()> related calls are supported, but they may not
behave as on Unix platforms. See L<perlport> for the full list.
Perl requires Winsock2 to be installed on the system. If you're
running Win95, you can download Winsock upgrade from here:
http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/S_WUNetworkingTools/W95Sockets2/Default.asp
Later OS versions already include Winsock2 support.
Signal handling may not behave as on Unix platforms (where it
doesn't exactly "behave", either :). For instance, calling C<die()>
or C<exit()> from signal handlers will cause an exception, since most
implementations of C<signal()> on Win32 are severely crippled.
Thus, signals may work only for simple things like setting a flag
variable in the handler. Using signals under this port should
currently be considered unsupported.
Please send detailed descriptions of any problems and solutions that
you may find to E<lt>F<perlbug@perl.org>E<gt>, along with the output
produced by C<perl -V>.
=head1 ACKNOWLEDGEMENTS
The use of a camel with the topic of Perl is a trademark
of O'Reilly and Associates, Inc. Used with permission.
=head1 AUTHORS
=over 4
=item Gary Ng E<lt>71564.1743@CompuServe.COME<gt>
=item Gurusamy Sarathy E<lt>gsar@activestate.comE<gt>
=item Nick Ing-Simmons E<lt>nick@ing-simmons.netE<gt>
=item Jan Dubois E<lt>jand@activestate.comE<gt>
=item Steve Hay E<lt>steve.hay@uk.radan.comE<gt>
=back
This document is maintained by Jan Dubois.
=head1 SEE ALSO
L<perl>
=head1 HISTORY
This port was originally contributed by Gary Ng around 5.003_24,
and borrowed from the Hip Communications port that was available
at the time. Various people have made numerous and sundry hacks
since then.
Borland support was added in 5.004_01 (Gurusamy Sarathy).
GCC/mingw32 support was added in 5.005 (Nick Ing-Simmons).
Support for PERL_OBJECT was added in 5.005 (ActiveState Tool Corp).
Support for fork() emulation was added in 5.6 (ActiveState Tool Corp).
Win9x support was added in 5.6 (Benjamin Stuhl).
Support for 64-bit Windows added in 5.8 (ActiveState Corp).
Last updated: 29 August 2007
=cut
Copyright 2K16 - 2K18 Indonesian Hacker Rulez