CHips L MINI SHELL

CHips L pro

Current Path : /proc/2/task/2/cwd/usr/share/doc/python-docs-2.6.6/html/library/
Upload File :
Current File : //proc/2/task/2/cwd/usr/share/doc/python-docs-2.6.6/html/library/math.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>9.2. math — Mathematical functions &mdash; Python v2.6.6 documentation</title>
    <link rel="stylesheet" href="../_static/default.css" type="text/css" />
    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../',
        VERSION:     '2.6.6',
        COLLAPSE_MODINDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../_static/jquery.js"></script>
    <script type="text/javascript" src="../_static/doctools.js"></script>
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within Python v2.6.6 documentation"
          href="../_static/opensearch.xml"/>
    <link rel="author" title="About these documents" href="../about.html" />
    <link rel="copyright" title="Copyright" href="../copyright.html" />
    <link rel="top" title="Python v2.6.6 documentation" href="../index.html" />
    <link rel="up" title="9. Numeric and Mathematical Modules" href="numeric.html" />
    <link rel="next" title="9.3. cmath — Mathematical functions for complex numbers" href="cmath.html" />
    <link rel="prev" title="9.1. numbers — Numeric abstract base classes" href="numbers.html" />
    <link rel="shortcut icon" type="image/png" href="../_static/py.png" />
 

  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../modindex.html" title="Global Module Index"
             accesskey="M">modules</a> |</li>
        <li class="right" >
          <a href="cmath.html" title="9.3. cmath — Mathematical functions for complex numbers"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="numbers.html" title="9.1. numbers — Numeric abstract base classes"
             accesskey="P">previous</a> |</li>
        <li><img src="../_static/py.png" alt=""
                 style="vertical-align: middle; margin-top: -1px"/></li>
        <li><a href="../index.html">Python v2.6.6 documentation</a> &raquo;</li>

          <li><a href="index.html" >The Python Standard Library</a> &raquo;</li>
          <li><a href="numeric.html" accesskey="U">9. Numeric and Mathematical Modules</a> &raquo;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="module-math">
<h1>9.2. <tt class="xref docutils literal"><span class="pre">math</span></tt> &#8212; Mathematical functions<a class="headerlink" href="#module-math" title="Permalink to this headline">¶</a></h1>
<p>This module is always available.  It provides access to the mathematical
functions defined by the C standard.</p>
<p>These functions cannot be used with complex numbers; use the functions of the
same name from the <a title="Mathematical functions for complex numbers." class="reference external" href="cmath.html#module-cmath"><tt class="xref docutils literal"><span class="pre">cmath</span></tt></a> module if you require support for complex
numbers.  The distinction between functions which support complex numbers and
those which don&#8217;t is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers.  Receiving an exception
instead of a complex result allows earlier detection of the unexpected complex
number used as a parameter, so that the programmer can determine how and why it
was generated in the first place.</p>
<p>The following functions are provided by this module.  Except when explicitly
noted otherwise, all return values are floats.</p>
<div class="section" id="number-theoretic-and-representation-functions">
<h2>9.2.1. Number-theoretic and representation functions<a class="headerlink" href="#number-theoretic-and-representation-functions" title="Permalink to this headline">¶</a></h2>
<dl class="function">
<dt id="math.ceil">
<tt class="descclassname">math.</tt><tt class="descname">ceil</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.ceil" title="Permalink to this definition">¶</a></dt>
<dd>Return the ceiling of <em>x</em> as a float, the smallest integer value greater than or
equal to <em>x</em>.</dd></dl>

<dl class="function">
<dt id="math.copysign">
<tt class="descclassname">math.</tt><tt class="descname">copysign</tt><big>(</big><em>x</em>, <em>y</em><big>)</big><a class="headerlink" href="#math.copysign" title="Permalink to this definition">¶</a></dt>
<dd><p>Return <em>x</em> with the sign of <em>y</em>.  On a platform that supports
signed zeros, <tt class="docutils literal"><span class="pre">copysign(1.0,</span> <span class="pre">-0.0)</span></tt> returns <em>-1.0</em>.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.fabs">
<tt class="descclassname">math.</tt><tt class="descname">fabs</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.fabs" title="Permalink to this definition">¶</a></dt>
<dd>Return the absolute value of <em>x</em>.</dd></dl>

<dl class="function">
<dt id="math.factorial">
<tt class="descclassname">math.</tt><tt class="descname">factorial</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.factorial" title="Permalink to this definition">¶</a></dt>
<dd><p>Return <em>x</em> factorial.  Raises <a title="exceptions.ValueError" class="reference external" href="exceptions.html#exceptions.ValueError"><tt class="xref docutils literal"><span class="pre">ValueError</span></tt></a> if <em>x</em> is not integral or
is negative.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.floor">
<tt class="descclassname">math.</tt><tt class="descname">floor</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.floor" title="Permalink to this definition">¶</a></dt>
<dd>Return the floor of <em>x</em> as a float, the largest integer value less than or equal
to <em>x</em>.</dd></dl>

<dl class="function">
<dt id="math.fmod">
<tt class="descclassname">math.</tt><tt class="descname">fmod</tt><big>(</big><em>x</em>, <em>y</em><big>)</big><a class="headerlink" href="#math.fmod" title="Permalink to this definition">¶</a></dt>
<dd>Return <tt class="docutils literal"><span class="pre">fmod(x,</span> <span class="pre">y)</span></tt>, as defined by the platform C library. Note that the
Python expression <tt class="docutils literal"><span class="pre">x</span> <span class="pre">%</span> <span class="pre">y</span></tt> may not return the same result.  The intent of the C
standard is that <tt class="docutils literal"><span class="pre">fmod(x,</span> <span class="pre">y)</span></tt> be exactly (mathematically; to infinite
precision) equal to <tt class="docutils literal"><span class="pre">x</span> <span class="pre">-</span> <span class="pre">n*y</span></tt> for some integer <em>n</em> such that the result has
the same sign as <em>x</em> and magnitude less than <tt class="docutils literal"><span class="pre">abs(y)</span></tt>.  Python&#8217;s <tt class="docutils literal"><span class="pre">x</span> <span class="pre">%</span> <span class="pre">y</span></tt>
returns a result with the sign of <em>y</em> instead, and may not be exactly computable
for float arguments. For example, <tt class="docutils literal"><span class="pre">fmod(-1e-100,</span> <span class="pre">1e100)</span></tt> is <tt class="docutils literal"><span class="pre">-1e-100</span></tt>, but
the result of Python&#8217;s <tt class="docutils literal"><span class="pre">-1e-100</span> <span class="pre">%</span> <span class="pre">1e100</span></tt> is <tt class="docutils literal"><span class="pre">1e100-1e-100</span></tt>, which cannot be
represented exactly as a float, and rounds to the surprising <tt class="docutils literal"><span class="pre">1e100</span></tt>.  For
this reason, function <a title="math.fmod" class="reference internal" href="#math.fmod"><tt class="xref docutils literal"><span class="pre">fmod()</span></tt></a> is generally preferred when working with
floats, while Python&#8217;s <tt class="docutils literal"><span class="pre">x</span> <span class="pre">%</span> <span class="pre">y</span></tt> is preferred when working with integers.</dd></dl>

<dl class="function">
<dt id="math.frexp">
<tt class="descclassname">math.</tt><tt class="descname">frexp</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.frexp" title="Permalink to this definition">¶</a></dt>
<dd>Return the mantissa and exponent of <em>x</em> as the pair <tt class="docutils literal"><span class="pre">(m,</span> <span class="pre">e)</span></tt>.  <em>m</em> is a float
and <em>e</em> is an integer such that <tt class="docutils literal"><span class="pre">x</span> <span class="pre">==</span> <span class="pre">m</span> <span class="pre">*</span> <span class="pre">2**e</span></tt> exactly. If <em>x</em> is zero,
returns <tt class="docutils literal"><span class="pre">(0.0,</span> <span class="pre">0)</span></tt>, otherwise <tt class="docutils literal"><span class="pre">0.5</span> <span class="pre">&lt;=</span> <span class="pre">abs(m)</span> <span class="pre">&lt;</span> <span class="pre">1</span></tt>.  This is used to &#8220;pick
apart&#8221; the internal representation of a float in a portable way.</dd></dl>

<dl class="function">
<dt id="math.fsum">
<tt class="descclassname">math.</tt><tt class="descname">fsum</tt><big>(</big><em>iterable</em><big>)</big><a class="headerlink" href="#math.fsum" title="Permalink to this definition">¶</a></dt>
<dd><p>Return an accurate floating point sum of values in the iterable.  Avoids
loss of precision by tracking multiple intermediate partial sums:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">sum</span><span class="p">([</span><span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.99999999999999989</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fsum</span><span class="p">([</span><span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">])</span>
<span class="go">1.0</span>
</pre></div>
</div>
<p>The algorithm&#8217;s accuracy depends on IEEE-754 arithmetic guarantees and the
typical case where the rounding mode is half-even.  On some non-Windows
builds, the underlying C library uses extended precision addition and may
occasionally double-round an intermediate sum causing it to be off in its
least significant bit.</p>
<p>For further discussion and two alternative approaches, see the <a class="reference external" href="http://code.activestate.com/recipes/393090/">ASPN cookbook
recipes for accurate floating point summation</a>.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.isinf">
<tt class="descclassname">math.</tt><tt class="descname">isinf</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.isinf" title="Permalink to this definition">¶</a></dt>
<dd><p>Check if the float <em>x</em> is positive or negative infinity.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.isnan">
<tt class="descclassname">math.</tt><tt class="descname">isnan</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.isnan" title="Permalink to this definition">¶</a></dt>
<dd><p>Check if the float <em>x</em> is a NaN (not a number).  For more information
on NaNs, see the IEEE 754 standards.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.ldexp">
<tt class="descclassname">math.</tt><tt class="descname">ldexp</tt><big>(</big><em>x</em>, <em>i</em><big>)</big><a class="headerlink" href="#math.ldexp" title="Permalink to this definition">¶</a></dt>
<dd>Return <tt class="docutils literal"><span class="pre">x</span> <span class="pre">*</span> <span class="pre">(2**i)</span></tt>.  This is essentially the inverse of function
<a title="math.frexp" class="reference internal" href="#math.frexp"><tt class="xref docutils literal"><span class="pre">frexp()</span></tt></a>.</dd></dl>

<dl class="function">
<dt id="math.modf">
<tt class="descclassname">math.</tt><tt class="descname">modf</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.modf" title="Permalink to this definition">¶</a></dt>
<dd>Return the fractional and integer parts of <em>x</em>.  Both results carry the sign
of <em>x</em> and are floats.</dd></dl>

<dl class="function">
<dt id="math.trunc">
<tt class="descclassname">math.</tt><tt class="descname">trunc</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.trunc" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the <tt class="xref docutils literal"><span class="pre">Real</span></tt> value <em>x</em> truncated to an <tt class="xref docutils literal"><span class="pre">Integral</span></tt> (usually
a long integer).  Uses the <tt class="docutils literal"><span class="pre">__trunc__</span></tt> method.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<p>Note that <a title="math.frexp" class="reference internal" href="#math.frexp"><tt class="xref docutils literal"><span class="pre">frexp()</span></tt></a> and <a title="math.modf" class="reference internal" href="#math.modf"><tt class="xref docutils literal"><span class="pre">modf()</span></tt></a> have a different call/return pattern
than their C equivalents: they take a single argument and return a pair of
values, rather than returning their second return value through an &#8216;output
parameter&#8217; (there is no such thing in Python).</p>
<p>For the <a title="math.ceil" class="reference internal" href="#math.ceil"><tt class="xref docutils literal"><span class="pre">ceil()</span></tt></a>, <a title="math.floor" class="reference internal" href="#math.floor"><tt class="xref docutils literal"><span class="pre">floor()</span></tt></a>, and <a title="math.modf" class="reference internal" href="#math.modf"><tt class="xref docutils literal"><span class="pre">modf()</span></tt></a> functions, note that <em>all</em>
floating-point numbers of sufficiently large magnitude are exact integers.
Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float <em>x</em> with <tt class="docutils literal"><span class="pre">abs(x)</span> <span class="pre">&gt;=</span> <span class="pre">2**52</span></tt>
necessarily has no fractional bits.</p>
</div>
<div class="section" id="power-and-logarithmic-functions">
<h2>9.2.2. Power and logarithmic functions<a class="headerlink" href="#power-and-logarithmic-functions" title="Permalink to this headline">¶</a></h2>
<dl class="function">
<dt id="math.exp">
<tt class="descclassname">math.</tt><tt class="descname">exp</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.exp" title="Permalink to this definition">¶</a></dt>
<dd>Return <tt class="docutils literal"><span class="pre">e**x</span></tt>.</dd></dl>

<dl class="function">
<dt id="math.log">
<tt class="descclassname">math.</tt><tt class="descname">log</tt><big>(</big><em>x</em><span class="optional">[</span>, <em>base</em><span class="optional">]</span><big>)</big><a class="headerlink" href="#math.log" title="Permalink to this definition">¶</a></dt>
<dd><p>With one argument, return the natural logarithm of <em>x</em> (to base <em>e</em>).</p>
<p>With two arguments, return the logarithm of <em>x</em> to the given <em>base</em>,
calculated as <tt class="docutils literal"><span class="pre">log(x)/log(base)</span></tt>.</p>
<p class="versionchanged">
<span class="versionmodified">Changed in version 2.3: </span><em>base</em> argument added.</p>
</dd></dl>

<dl class="function">
<dt id="math.log1p">
<tt class="descclassname">math.</tt><tt class="descname">log1p</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.log1p" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the natural logarithm of <em>1+x</em> (base <em>e</em>). The
result is calculated in a way which is accurate for <em>x</em> near zero.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.log10">
<tt class="descclassname">math.</tt><tt class="descname">log10</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.log10" title="Permalink to this definition">¶</a></dt>
<dd>Return the base-10 logarithm of <em>x</em>.  This is usually more accurate
than <tt class="docutils literal"><span class="pre">log(x,</span> <span class="pre">10)</span></tt>.</dd></dl>

<dl class="function">
<dt id="math.pow">
<tt class="descclassname">math.</tt><tt class="descname">pow</tt><big>(</big><em>x</em>, <em>y</em><big>)</big><a class="headerlink" href="#math.pow" title="Permalink to this definition">¶</a></dt>
<dd><p>Return <tt class="docutils literal"><span class="pre">x</span></tt> raised to the power <tt class="docutils literal"><span class="pre">y</span></tt>.  Exceptional cases follow
Annex &#8216;F&#8217; of the C99 standard as far as possible.  In particular,
<tt class="docutils literal"><span class="pre">pow(1.0,</span> <span class="pre">x)</span></tt> and <tt class="docutils literal"><span class="pre">pow(x,</span> <span class="pre">0.0)</span></tt> always return <tt class="docutils literal"><span class="pre">1.0</span></tt>, even
when <tt class="docutils literal"><span class="pre">x</span></tt> is a zero or a NaN.  If both <tt class="docutils literal"><span class="pre">x</span></tt> and <tt class="docutils literal"><span class="pre">y</span></tt> are finite,
<tt class="docutils literal"><span class="pre">x</span></tt> is negative, and <tt class="docutils literal"><span class="pre">y</span></tt> is not an integer then <tt class="docutils literal"><span class="pre">pow(x,</span> <span class="pre">y)</span></tt>
is undefined, and raises <a title="exceptions.ValueError" class="reference external" href="exceptions.html#exceptions.ValueError"><tt class="xref docutils literal"><span class="pre">ValueError</span></tt></a>.</p>
<p class="versionchanged">
<span class="versionmodified">Changed in version 2.6: </span>The outcome of <tt class="docutils literal"><span class="pre">1**nan</span></tt> and <tt class="docutils literal"><span class="pre">nan**0</span></tt> was undefined.</p>
</dd></dl>

<dl class="function">
<dt id="math.sqrt">
<tt class="descclassname">math.</tt><tt class="descname">sqrt</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.sqrt" title="Permalink to this definition">¶</a></dt>
<dd>Return the square root of <em>x</em>.</dd></dl>

</div>
<div class="section" id="trigonometric-functions">
<h2>9.2.3. Trigonometric functions<a class="headerlink" href="#trigonometric-functions" title="Permalink to this headline">¶</a></h2>
<dl class="function">
<dt id="math.acos">
<tt class="descclassname">math.</tt><tt class="descname">acos</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.acos" title="Permalink to this definition">¶</a></dt>
<dd>Return the arc cosine of <em>x</em>, in radians.</dd></dl>

<dl class="function">
<dt id="math.asin">
<tt class="descclassname">math.</tt><tt class="descname">asin</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.asin" title="Permalink to this definition">¶</a></dt>
<dd>Return the arc sine of <em>x</em>, in radians.</dd></dl>

<dl class="function">
<dt id="math.atan">
<tt class="descclassname">math.</tt><tt class="descname">atan</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.atan" title="Permalink to this definition">¶</a></dt>
<dd>Return the arc tangent of <em>x</em>, in radians.</dd></dl>

<dl class="function">
<dt id="math.atan2">
<tt class="descclassname">math.</tt><tt class="descname">atan2</tt><big>(</big><em>y</em>, <em>x</em><big>)</big><a class="headerlink" href="#math.atan2" title="Permalink to this definition">¶</a></dt>
<dd>Return <tt class="docutils literal"><span class="pre">atan(y</span> <span class="pre">/</span> <span class="pre">x)</span></tt>, in radians. The result is between <tt class="docutils literal"><span class="pre">-pi</span></tt> and <tt class="docutils literal"><span class="pre">pi</span></tt>.
The vector in the plane from the origin to point <tt class="docutils literal"><span class="pre">(x,</span> <span class="pre">y)</span></tt> makes this angle
with the positive X axis. The point of <a title="math.atan2" class="reference internal" href="#math.atan2"><tt class="xref docutils literal"><span class="pre">atan2()</span></tt></a> is that the signs of both
inputs are known to it, so it can compute the correct quadrant for the angle.
For example, <tt class="docutils literal"><span class="pre">atan(1)</span></tt> and <tt class="docutils literal"><span class="pre">atan2(1,</span> <span class="pre">1)</span></tt> are both <tt class="docutils literal"><span class="pre">pi/4</span></tt>, but <tt class="docutils literal"><span class="pre">atan2(-1,</span>
<span class="pre">-1)</span></tt> is <tt class="docutils literal"><span class="pre">-3*pi/4</span></tt>.</dd></dl>

<dl class="function">
<dt id="math.cos">
<tt class="descclassname">math.</tt><tt class="descname">cos</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.cos" title="Permalink to this definition">¶</a></dt>
<dd>Return the cosine of <em>x</em> radians.</dd></dl>

<dl class="function">
<dt id="math.hypot">
<tt class="descclassname">math.</tt><tt class="descname">hypot</tt><big>(</big><em>x</em>, <em>y</em><big>)</big><a class="headerlink" href="#math.hypot" title="Permalink to this definition">¶</a></dt>
<dd>Return the Euclidean norm, <tt class="docutils literal"><span class="pre">sqrt(x*x</span> <span class="pre">+</span> <span class="pre">y*y)</span></tt>. This is the length of the vector
from the origin to point <tt class="docutils literal"><span class="pre">(x,</span> <span class="pre">y)</span></tt>.</dd></dl>

<dl class="function">
<dt id="math.sin">
<tt class="descclassname">math.</tt><tt class="descname">sin</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.sin" title="Permalink to this definition">¶</a></dt>
<dd>Return the sine of <em>x</em> radians.</dd></dl>

<dl class="function">
<dt id="math.tan">
<tt class="descclassname">math.</tt><tt class="descname">tan</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.tan" title="Permalink to this definition">¶</a></dt>
<dd>Return the tangent of <em>x</em> radians.</dd></dl>

</div>
<div class="section" id="angular-conversion">
<h2>9.2.4. Angular conversion<a class="headerlink" href="#angular-conversion" title="Permalink to this headline">¶</a></h2>
<dl class="function">
<dt id="math.degrees">
<tt class="descclassname">math.</tt><tt class="descname">degrees</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.degrees" title="Permalink to this definition">¶</a></dt>
<dd>Converts angle <em>x</em> from radians to degrees.</dd></dl>

<dl class="function">
<dt id="math.radians">
<tt class="descclassname">math.</tt><tt class="descname">radians</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.radians" title="Permalink to this definition">¶</a></dt>
<dd>Converts angle <em>x</em> from degrees to radians.</dd></dl>

</div>
<div class="section" id="hyperbolic-functions">
<h2>9.2.5. Hyperbolic functions<a class="headerlink" href="#hyperbolic-functions" title="Permalink to this headline">¶</a></h2>
<dl class="function">
<dt id="math.acosh">
<tt class="descclassname">math.</tt><tt class="descname">acosh</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.acosh" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the inverse hyperbolic cosine of <em>x</em>.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.asinh">
<tt class="descclassname">math.</tt><tt class="descname">asinh</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.asinh" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the inverse hyperbolic sine of <em>x</em>.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.atanh">
<tt class="descclassname">math.</tt><tt class="descname">atanh</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.atanh" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the inverse hyperbolic tangent of <em>x</em>.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="math.cosh">
<tt class="descclassname">math.</tt><tt class="descname">cosh</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.cosh" title="Permalink to this definition">¶</a></dt>
<dd>Return the hyperbolic cosine of <em>x</em>.</dd></dl>

<dl class="function">
<dt id="math.sinh">
<tt class="descclassname">math.</tt><tt class="descname">sinh</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.sinh" title="Permalink to this definition">¶</a></dt>
<dd>Return the hyperbolic sine of <em>x</em>.</dd></dl>

<dl class="function">
<dt id="math.tanh">
<tt class="descclassname">math.</tt><tt class="descname">tanh</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#math.tanh" title="Permalink to this definition">¶</a></dt>
<dd>Return the hyperbolic tangent of <em>x</em>.</dd></dl>

</div>
<div class="section" id="constants">
<h2>9.2.6. Constants<a class="headerlink" href="#constants" title="Permalink to this headline">¶</a></h2>
<dl class="data">
<dt id="math.pi">
<tt class="descclassname">math.</tt><tt class="descname">pi</tt><a class="headerlink" href="#math.pi" title="Permalink to this definition">¶</a></dt>
<dd>The mathematical constant π = 3.141592..., to available precision.</dd></dl>

<dl class="data">
<dt id="math.e">
<tt class="descclassname">math.</tt><tt class="descname">e</tt><a class="headerlink" href="#math.e" title="Permalink to this definition">¶</a></dt>
<dd>The mathematical constant e = 2.718281..., to available precision.</dd></dl>

<div class="impl-detail compound">
<p class="compound-first"><strong>CPython implementation detail:</strong> The <tt class="xref docutils literal"><span class="pre">math</span></tt> module consists mostly of thin wrappers around the platform C
math library functions.  Behavior in exceptional cases follows Annex F of
the C99 standard where appropriate.  The current implementation will raise
<a title="exceptions.ValueError" class="reference external" href="exceptions.html#exceptions.ValueError"><tt class="xref docutils literal"><span class="pre">ValueError</span></tt></a> for invalid operations like <tt class="docutils literal"><span class="pre">sqrt(-1.0)</span></tt> or <tt class="docutils literal"><span class="pre">log(0.0)</span></tt>
(where C99 Annex F recommends signaling invalid operation or divide-by-zero),
and <a title="exceptions.OverflowError" class="reference external" href="exceptions.html#exceptions.OverflowError"><tt class="xref docutils literal"><span class="pre">OverflowError</span></tt></a> for results that overflow (for example,
<tt class="docutils literal"><span class="pre">exp(1000.0)</span></tt>).  A NaN will not be returned from any of the functions
above unless one or more of the input arguments was a NaN; in that case,
most functions will return a NaN, but (again following C99 Annex F) there
are some exceptions to this rule, for example <tt class="docutils literal"><span class="pre">pow(float('nan'),</span> <span class="pre">0.0)</span></tt> or
<tt class="docutils literal"><span class="pre">hypot(float('nan'),</span> <span class="pre">float('inf'))</span></tt>.</p>
<p class="compound-middle">Note that Python makes no effort to distinguish signaling NaNs from
quiet NaNs, and behavior for signaling NaNs remains unspecified.
Typical behavior is to treat all NaNs as though they were quiet.</p>
<p class="compound-last versionchanged">
<span class="versionmodified">Changed in version 2.6: </span>Behavior in special cases now aims to follow C99 Annex F.  In earlier
versions of Python the behavior in special cases was loosely specified.</p>
</div>
<div class="admonition-see-also admonition seealso">
<p class="first admonition-title">See also</p>
<dl class="last docutils">
<dt>Module <a title="Mathematical functions for complex numbers." class="reference external" href="cmath.html#module-cmath"><tt class="xref docutils literal"><span class="pre">cmath</span></tt></a></dt>
<dd>Complex number versions of many of these functions.</dd>
</dl>
</div>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
            <h3><a href="../contents.html">Table Of Contents</a></h3>
            <ul>
<li><a class="reference external" href="#">9.2. <tt class="docutils literal"><span class="pre">math</span></tt> &#8212; Mathematical functions</a><ul>
<li><a class="reference external" href="#number-theoretic-and-representation-functions">9.2.1. Number-theoretic and representation functions</a></li>
<li><a class="reference external" href="#power-and-logarithmic-functions">9.2.2. Power and logarithmic functions</a></li>
<li><a class="reference external" href="#trigonometric-functions">9.2.3. Trigonometric functions</a></li>
<li><a class="reference external" href="#angular-conversion">9.2.4. Angular conversion</a></li>
<li><a class="reference external" href="#hyperbolic-functions">9.2.5. Hyperbolic functions</a></li>
<li><a class="reference external" href="#constants">9.2.6. Constants</a></li>
</ul>
</li>
</ul>

            <h4>Previous topic</h4>
            <p class="topless"><a href="numbers.html"
                                  title="previous chapter">9.1. <tt class="docutils literal"><span class="pre">numbers</span></tt> &#8212; Numeric abstract base classes</a></p>
            <h4>Next topic</h4>
            <p class="topless"><a href="cmath.html"
                                  title="next chapter">9.3. <tt class="docutils literal docutils literal docutils literal"><span class="pre">cmath</span></tt> &#8212; Mathematical functions for complex numbers</a></p>
<h3>This Page</h3>
<ul class="this-page-menu">
  <li><a href="../bugs.html">Report a Bug</a></li>
  <li><a href="../_sources/library/math.txt"
         rel="nofollow">Show Source</a></li>
</ul>

          <div id="searchbox" style="display: none">
            <h3>Quick search</h3>
              <form class="search" action="../search.html" method="get">
                <input type="text" name="q" size="18" />
                <input type="submit" value="Go" />
                <input type="hidden" name="check_keywords" value="yes" />
                <input type="hidden" name="area" value="default" />
              </form>
              <p class="searchtip" style="font-size: 90%">
              Enter search terms or a module, class or function name.
              </p>
          </div>
          <script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../modindex.html" title="Global Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="cmath.html" title="9.3. cmath — Mathematical functions for complex numbers"
             >next</a> |</li>
        <li class="right" >
          <a href="numbers.html" title="9.1. numbers — Numeric abstract base classes"
             >previous</a> |</li>
        <li><img src="../_static/py.png" alt=""
                 style="vertical-align: middle; margin-top: -1px"/></li>
        <li><a href="../index.html">Python v2.6.6 documentation</a> &raquo;</li>

          <li><a href="index.html" >The Python Standard Library</a> &raquo;</li>
          <li><a href="numeric.html" >9. Numeric and Mathematical Modules</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
    &copy; <a href="../copyright.html">Copyright</a> 1990-2011, Python Software Foundation.
    <br />
    The Python Software Foundation is a non-profit corporation.  
    <a href="http://www.python.org/psf/donations/">Please donate.</a>
    <br />
    Last updated on Jul 20, 2011.
    <a href="../bugs.html">Found a bug</a>?
    <br />
    Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 0.6.6.
    </div>

  </body>
</html>

Copyright 2K16 - 2K18 Indonesian Hacker Rulez