CHips L MINI SHELL

CHips L pro

Current Path : /proc/3/task/3/cwd/proc/self/root/proc/3/root/opt/puppetlabs/puppet/share/man/man3/
Upload File :
Current File : //proc/3/task/3/cwd/proc/self/root/proc/3/root/opt/puppetlabs/puppet/share/man/man3/BIO_s_mem.3

.\" Automatically generated by Pod::Man 2.22 (Pod::Simple 3.13)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.ie \nF \{\
.    de IX
.    tm Index:\\$1\t\\n%\t"\\$2"
..
.    nr % 0
.    rr F
.\}
.el \{\
.    de IX
..
.\}
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
.    \" fudge factors for nroff and troff
.if n \{\
.    ds #H 0
.    ds #V .8m
.    ds #F .3m
.    ds #[ \f1
.    ds #] \fP
.\}
.if t \{\
.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
.    ds #V .6m
.    ds #F 0
.    ds #[ \&
.    ds #] \&
.\}
.    \" simple accents for nroff and troff
.if n \{\
.    ds ' \&
.    ds ` \&
.    ds ^ \&
.    ds , \&
.    ds ~ ~
.    ds /
.\}
.if t \{\
.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
.    \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.    \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
.    \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
.    ds : e
.    ds 8 ss
.    ds o a
.    ds d- d\h'-1'\(ga
.    ds D- D\h'-1'\(hy
.    ds th \o'bp'
.    ds Th \o'LP'
.    ds ae ae
.    ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "BIO_S_MEM 3"
.TH BIO_S_MEM 3 "2021-08-24" "1.1.1l" "OpenSSL"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
BIO_s_secmem, BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf, BIO_get_mem_ptr, BIO_new_mem_buf \- memory BIO
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/bio.h>
\&
\& const BIO_METHOD *BIO_s_mem(void);
\& const BIO_METHOD *BIO_s_secmem(void);
\&
\& BIO_set_mem_eof_return(BIO *b, int v)
\& long BIO_get_mem_data(BIO *b, char **pp)
\& BIO_set_mem_buf(BIO *b, BUF_MEM *bm, int c)
\& BIO_get_mem_ptr(BIO *b, BUF_MEM **pp)
\&
\& BIO *BIO_new_mem_buf(const void *buf, int len);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fIBIO_s_mem()\fR returns the memory \s-1BIO\s0 method function.
.PP
A memory \s-1BIO\s0 is a source/sink \s-1BIO\s0 which uses memory for its I/O. Data
written to a memory \s-1BIO\s0 is stored in a \s-1BUF_MEM\s0 structure which is extended
as appropriate to accommodate the stored data.
.PP
\&\fIBIO_s_secmem()\fR is like \fIBIO_s_mem()\fR except that the secure heap is used
for buffer storage.
.PP
Any data written to a memory \s-1BIO\s0 can be recalled by reading from it.
Unless the memory \s-1BIO\s0 is read only any data read from it is deleted from
the \s-1BIO\s0.
.PP
Memory BIOs support \fIBIO_gets()\fR and \fIBIO_puts()\fR.
.PP
If the \s-1BIO_CLOSE\s0 flag is set when a memory \s-1BIO\s0 is freed then the underlying
\&\s-1BUF_MEM\s0 structure is also freed.
.PP
Calling \fIBIO_reset()\fR on a read write memory \s-1BIO\s0 clears any data in it if the
flag \s-1BIO_FLAGS_NONCLEAR_RST\s0 is not set, otherwise it just restores the read
pointer to the state it was just after the last write was performed and the
data can be read again. On a read only \s-1BIO\s0 it similarly restores the \s-1BIO\s0 to
its original state and the read only data can be read again.
.PP
\&\fIBIO_eof()\fR is true if no data is in the \s-1BIO\s0.
.PP
\&\fIBIO_ctrl_pending()\fR returns the number of bytes currently stored.
.PP
\&\fIBIO_set_mem_eof_return()\fR sets the behaviour of memory \s-1BIO\s0 \fBb\fR when it is
empty. If the \fBv\fR is zero then an empty memory \s-1BIO\s0 will return \s-1EOF\s0 (that is
it will return zero and BIO_should_retry(b) will be false. If \fBv\fR is non
zero then it will return \fBv\fR when it is empty and it will set the read retry
flag (that is BIO_read_retry(b) is true). To avoid ambiguity with a normal
positive return value \fBv\fR should be set to a negative value, typically \-1.
.PP
\&\fIBIO_get_mem_data()\fR sets *\fBpp\fR to a pointer to the start of the memory BIOs data
and returns the total amount of data available. It is implemented as a macro.
.PP
\&\fIBIO_set_mem_buf()\fR sets the internal \s-1BUF_MEM\s0 structure to \fBbm\fR and sets the
close flag to \fBc\fR, that is \fBc\fR should be either \s-1BIO_CLOSE\s0 or \s-1BIO_NOCLOSE\s0.
It is a macro.
.PP
\&\fIBIO_get_mem_ptr()\fR places the underlying \s-1BUF_MEM\s0 structure in *\fBpp\fR. It is
a macro.
.PP
\&\fIBIO_new_mem_buf()\fR creates a memory \s-1BIO\s0 using \fBlen\fR bytes of data at \fBbuf\fR,
if \fBlen\fR is \-1 then the \fBbuf\fR is assumed to be nul terminated and its
length is determined by \fBstrlen\fR. The \s-1BIO\s0 is set to a read only state and
as a result cannot be written to. This is useful when some data needs to be
made available from a static area of memory in the form of a \s-1BIO\s0. The
supplied data is read directly from the supplied buffer: it is \fBnot\fR copied
first, so the supplied area of memory must be unchanged until the \s-1BIO\s0 is freed.
.SH "NOTES"
.IX Header "NOTES"
Writes to memory BIOs will always succeed if memory is available: that is
their size can grow indefinitely.
.PP
Every write after partial read (not all data in the memory buffer was read)
to a read write memory \s-1BIO\s0 will have to move the unread data with an internal
copy operation, if a \s-1BIO\s0 contains a lot of data and it is read in small
chunks intertwined with writes the operation can be very slow. Adding
a buffering \s-1BIO\s0 to the chain can speed up the process.
.PP
Calling \fIBIO_set_mem_buf()\fR on a \s-1BIO\s0 created with \fIBIO_new_secmem()\fR will
give undefined results, including perhaps a program crash.
.PP
Switching the memory \s-1BIO\s0 from read write to read only is not supported and
can give undefined results including a program crash. There are two notable
exceptions to the rule. The first one is to assign a static memory buffer
immediately after \s-1BIO\s0 creation and set the \s-1BIO\s0 as read only.
.PP
The other supported sequence is to start with read write \s-1BIO\s0 then temporarily
switch it to read only and call \fIBIO_reset()\fR on the read only \s-1BIO\s0 immediately
before switching it back to read write. Before the \s-1BIO\s0 is freed it must be
switched back to the read write mode.
.PP
Calling \fIBIO_get_mem_ptr()\fR on read only \s-1BIO\s0 will return a \s-1BUF_MEM\s0 that
contains only the remaining data to be read. If the close status of the
\&\s-1BIO\s0 is set to \s-1BIO_NOCLOSE\s0, before freeing the \s-1BUF_MEM\s0 the data pointer
in it must be set to \s-1NULL\s0 as the data pointer does not point to an
allocated memory.
.PP
Calling \fIBIO_reset()\fR on a read write memory \s-1BIO\s0 with \s-1BIO_FLAGS_NONCLEAR_RST\s0
flag set can have unexpected outcome when the reads and writes to the
\&\s-1BIO\s0 are intertwined. As documented above the \s-1BIO\s0 will be reset to the
state after the last completed write operation. The effects of reads
preceding that write operation cannot be undone.
.PP
Calling \fIBIO_get_mem_ptr()\fR prior to a \fIBIO_reset()\fR call with
\&\s-1BIO_FLAGS_NONCLEAR_RST\s0 set has the same effect as a write operation.
.SH "BUGS"
.IX Header "BUGS"
There should be an option to set the maximum size of a memory \s-1BIO\s0.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
\&\fIBIO_s_mem()\fR and \fIBIO_s_secmem()\fR return a valid memory \fB\s-1BIO_METHOD\s0\fR structure.
.PP
\&\fIBIO_set_mem_eof_return()\fR, \fIBIO_set_mem_buf()\fR and \fIBIO_get_mem_ptr()\fR
return 1 on success or a value which is less than or equal to 0 if an error occurred.
.PP
\&\fIBIO_get_mem_data()\fR returns the total number of bytes available on success,
0 if b is \s-1NULL\s0, or a negative value in case of other errors.
.PP
\&\fIBIO_new_mem_buf()\fR returns a valid \fB\s-1BIO\s0\fR structure on success or \s-1NULL\s0 on error.
.SH "EXAMPLES"
.IX Header "EXAMPLES"
Create a memory \s-1BIO\s0 and write some data to it:
.PP
.Vb 1
\& BIO *mem = BIO_new(BIO_s_mem());
\&
\& BIO_puts(mem, "Hello World\en");
.Ve
.PP
Create a read only memory \s-1BIO:\s0
.PP
.Vb 2
\& char data[] = "Hello World";
\& BIO *mem = BIO_new_mem_buf(data, \-1);
.Ve
.PP
Extract the \s-1BUF_MEM\s0 structure from a memory \s-1BIO\s0 and then free up the \s-1BIO:\s0
.PP
.Vb 1
\& BUF_MEM *bptr;
\&
\& BIO_get_mem_ptr(mem, &bptr);
\& BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
\& BIO_free(mem);
.Ve
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2000\-2019 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the OpenSSL license (the \*(L"License\*(R").  You may not use
this file except in compliance with the License.  You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.

Copyright 2K16 - 2K18 Indonesian Hacker Rulez