CHips L MINI SHELL

CHips L pro

Current Path : /proc/self/root/proc/2/root/proc/2/root/usr/share/man/man3/
Upload File :
Current File : //proc/self/root/proc/2/root/proc/2/root/usr/share/man/man3/Switch.3pm

.\" Automatically generated by Pod::Man 2.22 (Pod::Simple 3.13)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.ie \nF \{\
.    de IX
.    tm Index:\\$1\t\\n%\t"\\$2"
..
.    nr % 0
.    rr F
.\}
.el \{\
.    de IX
..
.\}
.\" ========================================================================
.\"
.IX Title "Switch 3"
.TH Switch 3 "2014-03-18" "perl v5.10.1" "User Contributed Perl Documentation"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
Switch \- A switch statement for Perl, do not use if you can use given/when
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\&    use Switch;
\&
\&    switch ($val) {
\&        case 1          { print "number 1" }
\&        case "a"        { print "string a" }
\&        case [1..10,42] { print "number in list" }
\&        case (\e@array)  { print "number in list" }
\&        case /\ew+/      { print "pattern" }
\&        case qr/\ew+/    { print "pattern" }
\&        case (\e%hash)   { print "entry in hash" }
\&        case (\e&sub)    { print "arg to subroutine" }
\&        else            { print "previous case not true" }
\&    }
.Ve
.SH "BACKGROUND"
.IX Header "BACKGROUND"
[Skip ahead to \*(L"\s-1DESCRIPTION\s0\*(R" if you don't care about the whys
and wherefores of this control structure]
.PP
In seeking to devise a \*(L"Swiss Army\*(R" case mechanism suitable for Perl,
it is useful to generalize this notion of distributed conditional
testing as far as possible. Specifically, the concept of \*(L"matching\*(R"
between the switch value and the various case values need not be
restricted to numeric (or string or referential) equality, as it is in other 
languages. Indeed, as Table 1 illustrates, Perl
offers at least eighteen different ways in which two values could
generate a match.
.PP
.Vb 1
\&        Table 1: Matching a switch value ($s) with a case value ($c)
\&
\&        Switch  Case    Type of Match Implied   Matching Code
\&        Value   Value   
\&        ======  =====   =====================   =============
\&
\&        number  same    numeric or referential  match if $s == $c;
\&        or ref          equality
\&
\&        object  method  result of method call   match if $s\->$c();
\&        ref     name                            match if defined $s\->$c();
\&                or ref
\&
\&        other   other   string equality         match if $s eq $c;
\&        non\-ref non\-ref
\&        scalar  scalar
\&
\&        string  regexp  pattern match           match if $s =~ /$c/;
\&
\&        array   scalar  array entry existence   match if 0<=$c && $c<@$s;
\&        ref             array entry definition  match if defined $s\->[$c];
\&                        array entry truth       match if $s\->[$c];
\&
\&        array   array   array intersection      match if intersects(@$s, @$c);
\&        ref     ref     (apply this table to
\&                         all pairs of elements
\&                         $s\->[$i] and
\&                         $c\->[$j])
\&
\&        array   regexp  array grep              match if grep /$c/, @$s;
\&        ref     
\&
\&        hash    scalar  hash entry existence    match if exists $s\->{$c};
\&        ref             hash entry definition   match if defined $s\->{$c};
\&                        hash entry truth        match if $s\->{$c};
\&
\&        hash    regexp  hash grep               match if grep /$c/, keys %$s;
\&        ref     
\&
\&        sub     scalar  return value defn       match if defined $s\->($c);
\&        ref             return value truth      match if $s\->($c);
\&
\&        sub     array   return value defn       match if defined $s\->(@$c);
\&        ref     ref     return value truth      match if $s\->(@$c);
.Ve
.PP
In reality, Table 1 covers 31 alternatives, because only the equality and
intersection tests are commutative; in all other cases, the roles of
the \f(CW$s\fR and \f(CW$c\fR variables could be reversed to produce a
different test. For example, instead of testing a single hash for
the existence of a series of keys (\f(CW\*(C`match if exists $s\->{$c}\*(C'\fR),
one could test for the existence of a single key in a series of hashes
(\f(CW\*(C`match if exists $c\->{$s}\*(C'\fR).
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
The Switch.pm module implements a generalized case mechanism that covers
most (but not all) of the numerous possible combinations of switch and case
values described above.
.PP
The module augments the standard Perl syntax with two new control
statements: \f(CW\*(C`switch\*(C'\fR and \f(CW\*(C`case\*(C'\fR. The \f(CW\*(C`switch\*(C'\fR statement takes a
single scalar argument of any type, specified in parentheses.
\&\f(CW\*(C`switch\*(C'\fR stores this value as the
current switch value in a (localized) control variable.
The value is followed by a block which may contain one or more
Perl statements (including the \f(CW\*(C`case\*(C'\fR statement described below).
The block is unconditionally executed once the switch value has
been cached.
.PP
A \f(CW\*(C`case\*(C'\fR statement takes a single scalar argument (in mandatory
parentheses if it's a variable; otherwise the parens are optional) and
selects the appropriate type of matching between that argument and the
current switch value. The type of matching used is determined by the
respective types of the switch value and the \f(CW\*(C`case\*(C'\fR argument, as
specified in Table 1. If the match is successful, the mandatory
block associated with the \f(CW\*(C`case\*(C'\fR statement is executed.
.PP
In most other respects, the \f(CW\*(C`case\*(C'\fR statement is semantically identical
to an \f(CW\*(C`if\*(C'\fR statement. For example, it can be followed by an \f(CW\*(C`else\*(C'\fR
clause, and can be used as a postfix statement qualifier.
.PP
However, when a \f(CW\*(C`case\*(C'\fR block has been executed control is automatically
transferred to the statement after the immediately enclosing \f(CW\*(C`switch\*(C'\fR
block, rather than to the next statement within the block. In other
words, the success of any \f(CW\*(C`case\*(C'\fR statement prevents other cases in the
same scope from executing. But see \*(L"Allowing fall-through\*(R" below.
.PP
Together these two new statements provide a fully generalized case
mechanism:
.PP
.Vb 1
\&        use Switch;
\&
\&        # AND LATER...
\&
\&        %special = ( woohoo => 1,  d\*(Aqoh => 1 );
\&
\&        while (<>) {
\&            chomp;
\&            switch ($_) {
\&                case (%special) { print "homer\en"; }      # if $special{$_}
\&                case /[a\-z]/i   { print "alpha\en"; }      # if $_ =~ /a\-z/i
\&                case [1..9]     { print "small num\en"; }  # if $_ in [1..9]
\&                case { $_[0] >= 10 } { print "big num\en"; } # if $_ >= 10
\&                print "must be punctuation\en" case /\eW/;  # if $_ ~= /\eW/
\&            }
\&        }
.Ve
.PP
Note that \f(CW\*(C`switch\*(C'\fRes can be nested within \f(CW\*(C`case\*(C'\fR (or any other) blocks,
and a series of \f(CW\*(C`case\*(C'\fR statements can try different types of matches
\&\*(-- hash membership, pattern match, array intersection, simple equality,
etc. \*(-- against the same switch value.
.PP
The use of intersection tests against an array reference is particularly
useful for aggregating integral cases:
.PP
.Vb 8
\&        sub classify_digit
\&        {
\&                switch ($_[0]) { case 0            { return \*(Aqzero\*(Aq }
\&                                 case [2,4,6,8]    { return \*(Aqeven\*(Aq }
\&                                 case [1,3,5,7,9]  { return \*(Aqodd\*(Aq }
\&                                 case /[A\-F]/i     { return \*(Aqhex\*(Aq }
\&                               }
\&        }
.Ve
.SS "Allowing fall-through"
.IX Subsection "Allowing fall-through"
Fall-though (trying another case after one has already succeeded)
is usually a Bad Idea in a switch statement. However, this
is Perl, not a police state, so there \fIis\fR a way to do it, if you must.
.PP
If a \f(CW\*(C`case\*(C'\fR block executes an untargeted \f(CW\*(C`next\*(C'\fR, control is
immediately transferred to the statement \fIafter\fR the \f(CW\*(C`case\*(C'\fR statement
(i.e. usually another case), rather than out of the surrounding
\&\f(CW\*(C`switch\*(C'\fR block.
.PP
For example:
.PP
.Vb 7
\&        switch ($val) {
\&                case 1      { handle_num_1(); next }    # and try next case...
\&                case "1"    { handle_str_1(); next }    # and try next case...
\&                case [0..9] { handle_num_any(); }       # and we\*(Aqre done
\&                case /\ed/   { handle_dig_any(); next }  # and try next case...
\&                case /.*/   { handle_str_any(); next }  # and try next case...
\&        }
.Ve
.PP
If \f(CW$val\fR held the number \f(CW1\fR, the above \f(CW\*(C`switch\*(C'\fR block would call the
first three \f(CW\*(C`handle_...\*(C'\fR subroutines, jumping to the next case test
each time it encountered a \f(CW\*(C`next\*(C'\fR. After the third \f(CW\*(C`case\*(C'\fR block
was executed, control would jump to the end of the enclosing
\&\f(CW\*(C`switch\*(C'\fR block.
.PP
On the other hand, if \f(CW$val\fR held \f(CW10\fR, then only the last two \f(CW\*(C`handle_...\*(C'\fR
subroutines would be called.
.PP
Note that this mechanism allows the notion of \fIconditional fall-through\fR.
For example:
.PP
.Vb 4
\&        switch ($val) {
\&                case [0..9] { handle_num_any(); next if $val < 7; }
\&                case /\ed/   { handle_dig_any(); }
\&        }
.Ve
.PP
If an untargeted \f(CW\*(C`last\*(C'\fR statement is executed in a case block, this
immediately transfers control out of the enclosing \f(CW\*(C`switch\*(C'\fR block
(in other words, there is an implicit \f(CW\*(C`last\*(C'\fR at the end of each
normal \f(CW\*(C`case\*(C'\fR block). Thus the previous example could also have been
written:
.PP
.Vb 4
\&        switch ($val) {
\&                case [0..9] { handle_num_any(); last if $val >= 7; next; }
\&                case /\ed/   { handle_dig_any(); }
\&        }
.Ve
.SS "Automating fall-through"
.IX Subsection "Automating fall-through"
In situations where case fall-through should be the norm, rather than an
exception, an endless succession of terminal \f(CW\*(C`next\*(C'\fRs is tedious and ugly.
Hence, it is possible to reverse the default behaviour by specifying
the string \*(L"fallthrough\*(R" when importing the module. For example, the 
following code is equivalent to the first example in \*(L"Allowing fall-through\*(R":
.PP
.Vb 1
\&        use Switch \*(Aqfallthrough\*(Aq;
\&
\&        switch ($val) {
\&                case 1      { handle_num_1(); }
\&                case "1"    { handle_str_1(); }
\&                case [0..9] { handle_num_any(); last }
\&                case /\ed/   { handle_dig_any(); }
\&                case /.*/   { handle_str_any(); }
\&        }
.Ve
.PP
Note the explicit use of a \f(CW\*(C`last\*(C'\fR to preserve the non-fall-through
behaviour of the third case.
.SS "Alternative syntax"
.IX Subsection "Alternative syntax"
Perl 6 will provide a built-in switch statement with essentially the
same semantics as those offered by Switch.pm, but with a different
pair of keywords. In Perl 6 \f(CW\*(C`switch\*(C'\fR will be spelled \f(CW\*(C`given\*(C'\fR, and
\&\f(CW\*(C`case\*(C'\fR will be pronounced \f(CW\*(C`when\*(C'\fR. In addition, the \f(CW\*(C`when\*(C'\fR statement
will not require switch or case values to be parenthesized.
.PP
This future syntax is also (largely) available via the Switch.pm module, by
importing it with the argument \f(CW"Perl6"\fR.  For example:
.PP
.Vb 1
\&        use Switch \*(AqPerl6\*(Aq;
\&
\&        given ($val) {
\&                when 1       { handle_num_1(); }
\&                when ($str1) { handle_str_1(); }
\&                when [0..9]  { handle_num_any(); last }
\&                when /\ed/    { handle_dig_any(); }
\&                when /.*/    { handle_str_any(); }
\&                default      { handle anything else; }
\&        }
.Ve
.PP
Note that scalars still need to be parenthesized, since they would be
ambiguous in Perl 5.
.PP
Note too that you can mix and match both syntaxes by importing the module
with:
.PP
.Vb 1
\&        use Switch \*(AqPerl5\*(Aq, \*(AqPerl6\*(Aq;
.Ve
.SS "Higher-order Operations"
.IX Subsection "Higher-order Operations"
One situation in which \f(CW\*(C`switch\*(C'\fR and \f(CW\*(C`case\*(C'\fR do not provide a good
substitute for a cascaded \f(CW\*(C`if\*(C'\fR, is where a switch value needs to
be tested against a series of conditions. For example:
.PP
.Vb 11
\&        sub beverage {
\&            switch (shift) {
\&                case { $_[0] < 10 } { return \*(Aqmilk\*(Aq }
\&                case { $_[0] < 20 } { return \*(Aqcoke\*(Aq }
\&                case { $_[0] < 30 } { return \*(Aqbeer\*(Aq }
\&                case { $_[0] < 40 } { return \*(Aqwine\*(Aq }
\&                case { $_[0] < 50 } { return \*(Aqmalt\*(Aq }
\&                case { $_[0] < 60 } { return \*(AqMoet\*(Aq }
\&                else                { return \*(Aqmilk\*(Aq }
\&            }
\&        }
.Ve
.PP
(This is equivalent to writing \f(CW\*(C`case (sub { $_[0] < 10 })\*(C'\fR, etc.; \f(CW$_[0]\fR
is the argument to the anonymous subroutine.)
.PP
The need to specify each condition as a subroutine block is tiresome. To
overcome this, when importing Switch.pm, a special \*(L"placeholder\*(R"
subroutine named \f(CW\*(C`_\|_\*(C'\fR [sic] may also be imported. This subroutine
converts (almost) any expression in which it appears to a reference to a
higher-order function. That is, the expression:
.PP
.Vb 1
\&        use Switch \*(Aq_\|_\*(Aq;
\&
\&        _\|_ < 2
.Ve
.PP
is equivalent to:
.PP
.Vb 1
\&        sub { $_[0] < 2 }
.Ve
.PP
With \f(CW\*(C`_\|_\*(C'\fR, the previous ugly case statements can be rewritten:
.PP
.Vb 7
\&        case  _\|_ < 10  { return \*(Aqmilk\*(Aq }
\&        case  _\|_ < 20  { return \*(Aqcoke\*(Aq }
\&        case  _\|_ < 30  { return \*(Aqbeer\*(Aq }
\&        case  _\|_ < 40  { return \*(Aqwine\*(Aq }
\&        case  _\|_ < 50  { return \*(Aqmalt\*(Aq }
\&        case  _\|_ < 60  { return \*(AqMoet\*(Aq }
\&        else           { return \*(Aqmilk\*(Aq }
.Ve
.PP
The \f(CW\*(C`_\|_\*(C'\fR subroutine makes extensive use of operator overloading to
perform its magic. All operations involving _\|_ are overloaded to
produce an anonymous subroutine that implements a lazy version
of the original operation.
.PP
The only problem is that operator overloading does not allow the
boolean operators \f(CW\*(C`&&\*(C'\fR and \f(CW\*(C`||\*(C'\fR to be overloaded. So a case statement
like this:
.PP
.Vb 1
\&        case  0 <= _\|_ && _\|_ < 10  { return \*(Aqdigit\*(Aq }
.Ve
.PP
doesn't act as expected, because when it is
executed, it constructs two higher order subroutines
and then treats the two resulting references as arguments to \f(CW\*(C`&&\*(C'\fR:
.PP
.Vb 1
\&        sub { 0 <= $_[0] } && sub { $_[0] < 10 }
.Ve
.PP
This boolean expression is inevitably true, since both references are
non-false. Fortunately, the overloaded \f(CW\*(Aqbool\*(Aq\fR operator catches this
situation and flags it as an error.
.SH "DEPENDENCIES"
.IX Header "DEPENDENCIES"
The module is implemented using Filter::Util::Call and Text::Balanced
and requires both these modules to be installed.
.SH "AUTHOR"
.IX Header "AUTHOR"
Damian Conway (damian@conway.org). This module is now maintained by
Alexandr Ciornii (alexchorny@gmail.com). Previously was maintained by
Rafael Garcia-Suarez and perl5 porters.
.SH "BUGS"
.IX Header "BUGS"
There are undoubtedly serious bugs lurking somewhere in code this funky :\-)
Bug reports and other feedback are most welcome.
.PP
May create syntax errors in other parts of code.
.PP
On perl 5.10.x may cause syntax error if \*(L"case\*(R" is present inside heredoc.
.PP
In general, use given/when instead. It were introduced in perl 5.10.0.
Perl 5.10.0 was released in 2007.
.SH "LIMITATIONS"
.IX Header "LIMITATIONS"
Due to the heuristic nature of Switch.pm's source parsing, the presence of
regexes with embedded newlines that are specified with raw \f(CW\*(C`/.../\*(C'\fR
delimiters and don't have a modifier \f(CW\*(C`//x\*(C'\fR are indistinguishable from
code chunks beginning with the division operator \f(CW\*(C`/\*(C'\fR. As a workaround
you must use \f(CW\*(C`m/.../\*(C'\fR or \f(CW\*(C`m?...?\*(C'\fR for such patterns. Also, the presence
of regexes specified with raw \f(CW\*(C`?...?\*(C'\fR delimiters may cause mysterious
errors. The workaround is to use \f(CW\*(C`m?...?\*(C'\fR instead.
.PP
Due to the way source filters work in Perl, you can't use Switch inside
an string \f(CW\*(C`eval\*(C'\fR.
.PP
May not work if sub prototypes are used (RT#33988).
.PP
Regex captures in when are not available to code.
.PP
If your source file is longer then 1 million characters and you have a
switch statement that crosses the 1 million (or 2 million, etc.)
character boundary you will get mysterious errors. The workaround is to
use smaller source files.
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
.Vb 3
\&    Copyright (c) 1997\-2008, Damian Conway. All Rights Reserved.
\&    This module is free software. It may be used, redistributed
\&        and/or modified under the same terms as Perl itself.
.Ve

Copyright 2K16 - 2K18 Indonesian Hacker Rulez